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The necessary and sufficient conditions are established on the scattering matrix for
an p-port to be reslizable as a cascade of multiport eavities having proportional ports
coupled through circulators. Design equations, yielding cavity dimensions, are given
including the incorporation of cavity loss; S, synthesis is prosented. Although
the theory can be used wherever the equivalent cireuit is velid, the results are seen to
be practically most useful for 2-port narrow-band microwave comb filtors to which
the theory is applied.

1. Introduction

With the advent of satellite communication systems, the need for precise
synthesis methods for microwave networks has become clear in order that
equipment can be efficiently used (Atia and Williams 1971). Towards this
end, we present here a synthesis method, utilizing cavity resonators, which
differs considerably in philosophy from those presently in the literature (Atia
and Williams 1971, 1972, Cohn 1957, Levy 1967, Rhodes 1970, Saito 1970).

The main idea of this paper is tied to the factorization of scattering
matrices (Newcomb 1966, pp. 150, 190, DeWilde et al. 1971). In particular,
once the form of the scattering matrix for a multiport cavity is recognized,
eqn. (5b), the form of the scattering matrix of a cascade of such cavities
coupled through circulators is known, since this overall scattering matrix is
formed as a product. The problem of synthesis is then that of factorization
of a given scattering matrix into appropriate realizable terms. The scatter-
ing matrix of an n-entry cavity is obtained from known equivalent circuits
(Kurokawa 1969, p. 191) developable from standard electromagnetic theory
and valid for a single mode of excitation (Kahan 1956, p. 63). From the
physics of the situation cavity dimensions are determined in terms of scatter-
ing matrix parameters, table 1, allowing for physical constructions.

We begin in § 2 by developing the scattering matrix of a multiport cavity
from its equivalent circuit. In § 3 we present the realizability conditions for
o cascade synthesis of cavities whose ports are proportionally dimensioned.
Since 2-port S, synthesis is of most practical interest, we concisely cover
this situation in §4. In §5 we discuss the actual dimensioning of cavities
giving design equations applicable to the synthesis of the comb nature of
responses for lossless structures while presenting an approximation theory.
From this, the form of S, is seen to be ideally suited for the design of comb
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filters (George and Zamanakos 1954, MacFarlane 1960, Woodward 1955,
p. 96, Burdic 1968, p. 75), especially in environments where large dynamic
signal ranges might be expected. Finally, after the example of §7, we
discuss the results in § 8, including comments on the effects of loss and the
various limitations on the theory.

Fig. 1
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Multiport cavity and equivalent circuit.

2, Multiport cavity scattering matrix

For our purposes the scattering matrix of a multiport cavity can be
developed from its equivalent circuit. Such an equivalent circuit is shown
in fig. 1 (b) for the n-port cavity of fig. 1 (a). Asis known (Kurokawa 1969,
p. 191), this equivalent circuit approximates a cavity working in a single
mode over a limited frequency range, roughly less than 109 of centre
frequency. The main loop in the equivalent circuit describes the resonant
behaviour of the cavity, this heing characterized by the lumped series elements
RLC. The various ports of the cavity are coupled to the main loop by the
ideal transformers of non-negative turns ratios bs by, .., t,, these turns ratios
being physically determined by the input hole geometries.

Assuming terminal voltages and currents, V, and J ¢ a6 the kth port as
shown in fig. 1 (b), we have on, straightforward analysis,

= ¥ 4V, I=td, k=1,..,n (1a)
kal
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where I, is the main loop current and z is the main loop self-impedance
1

pC‘; C>0,L>0, R>0 {1b)

z{p)=R+pL+
Note that, for a lossless cavity, R=0, which is usually a good approximation
for physical structures.

Substituting the first of eqns. (1 a) into the second, it is straightforward to
see that the admittance matrix of the n-port cavity is

Y(p) 7;3-) T (2)

where 7' is the n-vector whose components are £, ..., t,: the superscript ¢
indicates the transpose. The scattering matrix 8 of the cavity is given in
terms of the admittance matrix ¥ by (Newcomb 1966, p. 52)

S=(1,+ ¥y (1,- 1) (3

where 1, is the nxn identity matrix. Direct cross-multiplication shows
that

1 =1 1
- { =] — ¢
(I,,+ZTT) 1, z+T'TTT (30)
from which eqns. (2) and (3 a) give
2 .
=], ———
S=lu=yE 77 @)

£}
where |T|*=T"T= ¥ 2 is the square of the norm of the turns ratio
vector. £=1

Cascade of cavities coupled through circulators.

We next consider an interconnection of m such cavities as shown in fig. 2,
that is, a cascade of m cavities coupled through 3n-port circulators. As is
known, the scattering matrix of this structure is equal to the product of the
individual cavity scattering matrices (Newcomb 1968, p. 150)

§=8,8,...8, (5a)
where the scattering matrix of the ith cavity is given by, as prescribed by
eqn. (4),

1
I, ZL-(P)=Rt+PLf+E (5b)

1

2
Sp)=ly————o T
o z(p)+ [T

65c?2
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3. Cavity realizability theorem

The most important case of interest js in the design of structures whose
input ports are compatible in the sense that the port geometries are set out
in o similar manner. By this, we mean precisely that the turns ratio vectors
of the cavities are proportional. We make this assumption from now on
for which the connection of fig. 2 has

Tl’.:kiT’ i=l, ey M (6)

where the positive k, are scalar constants and 7 is a fixed n-vector of non-
negative entries. A set of m cavities satisfying eqn. (6) will be said to have
proportional ports.

For proportional cavities, we have the following realizability theorem for
structures of the form of fig. 2.

Theorem of realizability
The necessary and sufficient conditions for a scattering matrix S(p) to be
realizable as a cascade of m n-port cavities with proportional ports coupled
through circulators (as in fig. 2) are that S be expressible in terms of real
parameters as
{ m 2
S(p):l”-zT— [l— %M] (Ta)
=i PP+op+yy

1Ty
where T is a non-zero n-vector of non-negative entries and
>0, x;—B;20, ¥,>0, i=1,...m (7 b)
Proof

(a) Necessity. From eqns. (5 b) and (6) we can express the n-port cavity
scattering matrix as

2 a 2
Si=1“—K[1-z‘ g ]=1n—1{[1—p———_+ﬁ‘p+"‘],

2+ k2 T2 PP +ap+y,
TmM
K=K2=——I— (8 G‘,)
17(e
where
_ R +E2)TY? R, —k3| T|? _
x = Ll‘ 3 Bi_ Li tO 4 _'Li_o; (8 b)
Solving these latter yields
Rt ki2 “i—ﬁt 1
2 == + £, 2-—_—_——, OL == 80)
Li o; Bf Li " Tug [l § Ve (

which, with Z,> 0, shows the necessity of eqn. (75). Next we note, using

"
the form of eqn. (8 a), that all scattering matrices commute for § = IT S;
of eqn. (6a). Direct multiplication then yields eqn. (7 a). =1
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(b) Sufficiency. We exhibit a synthesis procedure by extracting a term
from the product by multiplication through its inverse. We have, again by
direct multiplication with eqn. (8 a),

PPrap+y,
Sl=l,-K|[1-=T2TNH 8d
f " [ Pz'*'ﬁtp"'?i] (84)

Given a realizable S we first put it into the form of eqn. (7a). Then,
applying the inverse of S, to S, using eqh. (8 d), shows that the extraction of
S; leaves a remainder S8,-1§ which satisfies the Theorem of Realizability.
Continuing, fig. 2 results as the degree lowers by 2 at each extraction,

Q.ED.

By way of comment, we see that S(p) is bounded real, being the scattering
matrix of a passive n-port (Newecomb 1966, p. 98), Thus S(p) is analytic
in the right half p-plane, which is also clear from eqn. (75). Also, if R,;=0
then B;= —a, and §, is paraunitary.

Factorization of K yields the turns ratio vector T, =%, T. Thus, besides
the n turns ratio entries of T itself, there are four other parameters (R, L,,
Cy, k) determined by the physical cavity, whereas eqn. (8¢) only specifies
three, we see that there is freedom in specifying L;, say. Thus we wish to
choose the normalization parameter, L; say, such that the cavities can be
conveniently dimensioned,

4, Su(p) conditions

In the last section we discussed realizability conditions placed upon the
full scattering matrix. However, most often it is one or more off-diagonal
elements which are specified, perhaps only in magnitude for real frequencies.
Here we discuss the situation with regard to S,,(p) for 2-ports from which
results for n-ports can be readily inferred ; discussion of |Sa(jw)| oceurs in
§ 6.

From eqn. (7 a)

T PPHBip+ )’i]
S., = B 1-—- 9
a(Pp) 21 [j i!‘l i;gf;::;;i;:;‘;:; (9)

Since the conditions on =i B, v are known from egn. (7 b), the only unknown
realizability question concerns K,. We can write
[ Lyt
— Ky == B 50 10
NPT T G 1)
which, as a function of loft;, is seen to have n maximum of +4 at ¢, =4, (and
a minimum of —} at ¢, = —¢,), Thus, if 0< ~ K, <}, we can solve for rea]
non-negative f,/t, and hence obtain a structure for each section in the form
of fig. 1 (b) (on arbitrarily specifying one of ¢,, {, and multiplying each by %, of
eqn. (8c) to get the actual turns ratios for the section as seen by eqn. (6)).
Thus we have the realizability conditions on a 2-port §,, as

Os_'[{ﬂls%’ Ri>0, ai—lﬁtlzo, }’i>0, i?l, ceny ™M (ll)

Note that if more than two ports are present, the denominator in eqn. (10}
is increased, in which case eqns. (11) still hold, thus giving the realizability
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conditions on an n-port 8.
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In other words, given S,, of the form of eqn.

(0) satisfying eqn. (11) a scattering matrix satisfying the Theorem of Realiza-
bility can be created, for any n > 2.

3. Cavity and aperture dimensioning

In this section we present basic equations to determine waveguide cavity
and coupling aperture dimensions for the realization of a basic 2-port scatter-

ing matrix

1 2o =
WEHE2 | Gty 82 Ptap+y
Table 1. Design parameter calculations given o, B, y, kt, (i=1, ..., n)
Design
parameter Caleulation Comments
a Choose
Use standard waveguide
] Choose a=depth, b=height, in m
“=3‘ﬂ‘x 108 A in mfsec
vy
A2
A=
b J ) (A/2)\2 ain m
o
l I=3A, l=cavity length in m
..~ 2T vy %72 =2(kt,} if n=2 and
o {kt)? (2—B) —hn=
For apertures in transverse
M= lab fﬂz 1 field, as fig. 3; others use
o 2 Q. M, as in Matthaei et al.
(1964, p. 461)
d;=ith aperture diameter in m
d; d;=%/(8M)) If Md;>1 use elliptical hole
(Cohn 1957, Matthaei ef al.
1884, Kretzschmar 1970)
377wl + B)
By=—g— .
4 Rgin ©)
2h{a? + [2)2
al{a® + %) + 2b(a® 4 1)
o=cavity wall conductivity
o dn? % 10-7f in O/m
=T g Choose appropriate lossy
e material
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satisfying the realizability conditions >0, «— Bl 20, y>0. For the sake
of clarity, we restrict our attention to 2-port cavities in rectangular wave-
guides operated in the fundamental TE,, mode, but the same principles
apply to other multiport waveguide shapes and modes. Table 1 summarizes
the results for a low-loss rectangular waveguide realization with apertures
as shown in fig. 3. 'We assume that the parameters «, B, ¥ and the turns ratios
kty, kty (with k as in eqn. (8)) have been determined from § as in eqn. (12), and
that the waveguide dimensions a and & are specified. Then the cavity length
I for the TE,;; mode is half a guide wavelength (Ramo and Whinnery 1953,
p. 421)

A A 2y
Sy TN oraT vy G

where X is the free-space wavelength at the resonant frequency and v is the
free-space propagation velocity (3 x 108 m/sec).

Fig. 3

Waveguide cavity resonator with elliptical aperture couplings.

The dimensions of a coupling iris of a given shape is determined from the
turns ratio, using Bethe’s small aperture theory (Marcuvitz 1951, p. 241,
Cohn 1957). The magnetic polarizability A of the iris is obtained by
equating the two expressions for the external @ of the cavity due to the
transformer coupling (Kurokawa 1969, p. 193, Matthaei e al, 1964, p. 461)

0. =l 21Ty _ Pata,
KR (a=B)2  4mdEA

(14)

The diameter d of a circular coupling aperture can be determined from the
relation (Marcuvitz 1951, p. 241)

M =d¥6 (15)
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However, should d turn out to be relatively large with respect to the wave-
length dimension, the circular aperbure may not be practical. One can
revert to other shapes of apertures (e.g. elliptic, rectangular) whose dimen-
sions ean be determined from graphs and equations given by Matthaei et al.
(1964, p. 234), Cohn (1952) and Kretzschmar (1970).

Small cavity losses can be considered by caleulating the unloaded quality
factor, Q,, of the resonator ; this is given by (Ramo and Whinnery 1953,
p. 424)

_al 2y 7 q 2b(a? + [y 2 0
al(a®+ I?) + 2b(a® 4 )

where Rg is the surface resistivity and 5 (=377 Q in air} is the free space
intrinsic impedance. R is related to conductivity ¢ by the relation {Ramo
and Whinnery, 1953, p. 239) Rg=+/(wfulc), where # is the material permea-
bility (47 x 10-7 Hy/m for waveguide materials) and / is the operating fre-
quency. For standard waveguide materials o can be found in a standard
reference (Westman 1957, P- 45) or published curves (Ramo and Whinnery
1953, p. 238).

Some comments on normalization may be worth while. We see from
eqn. (7 a) that if the frequency is scaled by 2=Q,p, for which

Bi=BiQ,, o = {2, v =y, /Q,2 {17 a)

then, if the impedance level is raised, these parameters are left invariant.
A change in the impedance level, however, is effected by a change in the
dimension a, since at a fixed frequency f=1/), the characteristic impedance
of the guide is (Ramo and Whinnery 1953, p. 367)

Z":Z"‘E:___L,\_z (17 b)
J-)]

From the beginning we have used the scattering matrix which can be con-
sidered as & normalized one with all normalizing port impedances equal to
Zy (Newcomb 1966, P. 75). Thus, in raising the impedance level, say from
1 Q to Z, Q, we divide the turns ratios t; by Z, (Newcomb 19686, p- 75) which,
on using eqns, (7) and (8), leaves § invariant, as expected (Newcomb 1906,
P-74). Indeed, cavity dimensions can be expressed in terms of units of A,
as table 1 shows, with denormalization to the operating wavelength occurring
for constructions, the latter being accompanied automatically by an impedance
level shift via eqn. (17 b).

6. Comb filter approximation

In this section a method of preseribing any off-diagonal element of a
realizable n-port scattering matrix in terms of real frequency data is con-
sidered. As will be seen, the practical characteristics are those of comb
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filters (George and Zamanakos 1954, MacFarlane 1860). Without loss of
generality, the element we shall deal with is taken as §,,, but it is clear that
the same arguments apply for any 8, I[#m.

We recall the form of S, as

o pA+ Bip+ n]
S =K 1~ e Mt Ot oA 9
ufP)=Ha [ :l-_ll P +oap+y, ®)

which is subject to the realizability constraints of eqn. (11). Since practical
cavities have very small losses we carry out the approximation for the loss-
less case in which R,=0 for all 7, or ;= —f; from eqn. (8 ¢). Then the
factors [p®—oa;p+ y)f[p®+ap+y,] are all-pags which for real frequencies
have unit magnitude and hence can be expressed in terms of the phase angles
0,_- as

. . PP—a;p+
exp [j8,(w)]=cos 8,47 sin 8, = [’:’Wﬁﬁzjn-jm (18 a)

The magnitude of S,, is therefore given by

[Saljew)|=v/2[Ky| \/[1 =icos ( Z",l ei(w))] (18 b)

m

From this equation it is seen that as ), ,(w) varies monotonically between

=
0 and 2mar, the continuous function |8,,| becomes equal to zero m + 1 times,
passing m times through its maximum value of —2K,,. The zeros and
maxima of |8,,| alternate along the jw axis, being also interlezved with those
frequencies for which |8,,|=+/2|K, |, typically as shown in fig. 4. This
exhibits the comb filter characteristic of the circuit. Although the specifica-
tions of such comb filter characteristics can be made in several ways, we
shall concentrate on one of most interest to the practical point of view, giving
comments on another.

Fig. 4
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Typical lossless cavity filter response.

Practically a specification of the zeros and maxima of [S,,| is of interest
and, as we know from fig. 4, these must alternate. Thus, assume that the
peaks and valleys of {8, | are given by +u,, +pu,, ..., +p, and Q,=0, +Q,,
+Qy, ..., +Q,, o, respectively, with

Q=0<py < Q< Q<. . <Q, <p, <0 (19)
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From eqn. (18 ) it is clenr that these frequencies are solutions of

in — 1 for w=p; (peak)
cos ( Zl 9f(w)) - {+ ! for w=Q; (valley) (204)

with, from eqn. (18 a),

0 :
o %w—)m:f}; =1, m (20 4)

These last two equations are equivalent to

L) ) (2k+ V)mr for w =p,
D) tan-1 —f— _ _ , k=0, £1, +2 .. 21
Z, ot {ﬂkw for w=0, =0 =

The approximation problem is to determine the unknown o; and y,; for
this last equation given #e and €, satisfying eqn. (19). Towards this, let us
define the polynomial F(p) by

Fip)= q (B2 +ap+ y,) = Q(p) + K, P(p) (22 a)

where Q(p) and P(p) are the even and odd parts of F respectively with
Ky>0 o constant to make P monic. We have by eqn. (18 a)

- 4@ e Pljw) 29§
tnn[ :§| tan wa—yi] ik, Tliw) (223)

and, therefore, comparing eqns. (21) and (22 ), it is evident that the zeros
of P(p) occur at + j £3; and those of @Q(p) occur at + Jjrg. Thus

NI

Qp) = q @ +ud), Po)=p [ 6*+0 (22 ¢)

and K, is a constant free to be chosen. Since the poles and zeros of X(p)=
KoP(p)/Q(p) alternate and are simple on the jw axis with X(1)20, X(p) is a
reactance function. Thus F(p) is a Hurwitz polynomial (Guillemin 1949,
p. 398), in which case «; and ¥i are positive. Under our lossless approxima-
tion assumption of 8, = —ay we can see that the S,,(p) realizability conditions
of eqn. (11) are satisfied by choosing any real Ky with 0< — K, <} Any
positive A can be chosen at eqn. (22 b), but since, as experience shows, the
«; decrease with K, a suitably small K, can conveniently be used to obtain
suitable large @ (eqn. (14)).

In conclusion, any comb filter curve of the type shown in fig. 4 can be
realized by specifying its alternating zeros and (equal) peaks the latter of
magnitude not greater than 1=2|Ky ) nax by eqn. (18 ).

Further, if other than the zeros and peaks are specified, as for example
the 3 dB frequencies, then the interpolation of Youls and Saito (1967, p. 107)
may be applicable to finding the reactance function P|@. However, this
latter method does not guarantee that P is odd and of degree less than o,
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nor does it apply to the case treated above since the 4 matrix of Youla and
Saito (1967) has infinite entries. If the interpolation of Youla and Saito
(1967) were ever applicable it would generally use close to twice as many
cavities as seem necessary.

7. Example

This example demonstrates the design of a narrow X-band waveguide
comb filter. The normalized angular frequency peaks and valleys of the
scattering matrix coefficient 8,, are specified as 0-08, 1-0, 1-02 and 0-99, 1-01
respectively as shown. in fig. 5(a). The peaks and valleys alternate as
required by eqn. (19). K, in eqn. (9) is taken to be —}, which gives ¢, =1,
and hence equal coupling holes in each port of the cavity. From these zeros
and peaks the polynomial F(p) is formed as in eqn. (22 a):

F(p)=Qp) + Ko P(p) = q (2 +ap+y)

Fig. 5
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(a) Example specification. (b) Details of response for different K.
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clearly we require m to be equal to 3. The constant
part of F(p) can be arbitrarily chosen.
the S,; response do not change with K,
The larger K,, the broader the maxima and the
vice versa, as shown in fig. 5 (b) which shows th
on the shape of the §,, response. It is true ¢
in different external quality factors @

K. 4. Zaki and R. W. Newcomb

{as calculated through table 1).

Table 2

o these respon

External quality factor
K
’ Cavity No. 1 Cavity No. 2 Cavity No. 3
1 20018 3282-68 3381-39
01 23-03 30141 300-64
0-05 100-46 130-95 135-035
0-01 528-89 541-77 790-98
0-001 5269-32 5400-89 8002-40

In order to have aperture dimensions that
with the waveguide dimensions, the ranges of @
Thus we choose K,=0-05 which
By performin
factors, we obtain «

factors,

three cavities.

From the right side of eqn. (15 c), knowing d
used with the 3/ just found to obtain the res

=7-15x 1073,

At this frequency Ay=1-181in.,

2;= A, of the cavities are, in inches, I, =0.817, 1,=0-782,
table 1, the corresponding magnetic polarizabilitie
inches, A, =06-93x10-3, My=T42x10-3, M,=612x10-3,
curve in Matthaei ef al. (1964, p.
is chosen which gives Af/d,?
dy and hence d, to give table 3 which shows

are not large in comparison
ex from 50 to 500 are practical.
gives an adequate range of external quality
g a computer-aided factorization on F(p) into quadratic
1=0:01508, «,=0-019918, oy =0-015019, y,=0-97268,
y2=0-98896, y;=1-10283. Assume that the comb fi
centre frequency of 10 GC in WR-80 wave
(@=09in.,, b=04in.).

v A is found and eqn. (155)
onance correction ; the new

Table 3. Initial aperture dimensiony

Cavity No. d, (in.) d, {in.)
1 0-459 011475
2 0-47 0-1175
3 0-44 0-11

multiplier K, of the odd
Although the peaks and valleys of
ses are of different shapes,
narrower the minima, and
e effect of variation of K,
hat different values of K, result
ex for each cavity as shown in table 2

lter is to operate at a
guide of rectangular cross section
and the lengths,
l,=0-757.
g are found to be, in cubic
By using the
234) an elliptic aperture with dy/d, =0-25
Knowing M, we then solve for
the aperture dimensions for the
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elliptic aperture dimensions are obtained after three iterations using this same
Process with the new d, giving table 4.

Table 4. Corrected aperture dimensions

Cavity No. d, (in.) d, (in.)
1 0-403 010075
2 0-407 -10175
3 0-386 0-0865

The final cavities can be constructed with WR-90 waveguide of lengths
given above and identical apertures at each end of dimensions shown in
table 4. The three cavities are then connected to three matched 6-port
circulators (which can be made of twelve 3-port circulators) according to
fig. 2. Then §,,, for fig. 5, results by loading the final port in 2 matched
load and feeding at port one by a matched source.

Fig. 6
Ko =05
~——PRa0) Qu= 0000
....... =-0005 Qu=20
|521(JU)| =xxx R=-001 Qu=1000

oco Ra:005 Qu=200

975 1 W 1025

Effects of cavity losses.

Finally the effects of cavity losses on the 8., response are shown in fig. 6
for the example at hand. As expected, the maxima decrease and the minima
increase as the losses increase. This is illustrated by the curves of fig. 6
which show the response for unloaded @’s of oo, 2000, 1000 and 200.

8. Discussion

This paper presents results directly applicable to the design of microwave
filters using resonant cavities as the dynamical elements. Although the
microwave cavity gives the practical motivation for the study, it should be
clear that the results hold for any multiport having an equivalent circuit in
the form of fig. 1 (b). '
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Indeed the main theoretical results hold for large R in the equivalent
circuit of fig. 1(b). However, for practical microwave structures only low-
loss materials are ever considered, so that our synthesis results are of most
use when lossless or nearly lossless matrices are on hand, this being the signi-
ficant reason why only lossless approximation is seriously considered.

The design of the coupling holes into the cavity is rather fascinating. If
small enough circular holes do not result from the design formula, eqn. (15),
then elliptic holes will fit for which the theory is outlined in Kretzschmar (1970).
However, practical designs are more readily constructed for rectangular-like,
cigar-shaped, holes. These latter approximate elliptical ones with large eccen-
tricity and considerable empirical design data exist for cigar-shaped holes
yielding magnetic polarizability in the range 0 < M < oo (Matthaei et al. 1064,
p- 234). Likewise physical structures have non-zero guide wall thickness
whereas the results presented here assume zero thickness. Consequently,
thickness corrections (Matthaei et al. 1964, p. 243} can be simply applied to
M, say at eqn. (15), to get more accurate designs.

For comb filters with normal insertion loss requirements, the results given
here can yield practical designs. However, if high insertion loss is required,
the limiting factor undoubtedly becomes the isolation of the circulators used
in fig. 2 to realize the product of scattering matrix factors. Indeed, other
methods of realizing such products exist (Belevitch 1968, p. 329); however,
these cannot be applied here because of the necessary form of § required at
eqn. (7 a),

Since for a cavity with more than two ports only the number of turns
ratios increase, in fig. 1 (), over the 2-port case and since these turns ratios
are designed through appropriate coupling apertures, the design calculations
of table 1 are seen to hold for the n-port case ; the only caution being on the
placement of the aperture holes which should not be too close together such
that the assumptions under which the magnetic polarizability of eqn. (15)
is derived are not upset.
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