An Efficient Analysis Method for Nonlinear Networks*

M. A. Parkhideh’ and R. W. Newcomb

Aﬁstract: By partitioning nonlinear elements an efficient
method for the analysis of nonlinear networks is presented.
The method 1s based upon techniques of Branin as well as
resistive equivalents for dynamical elements. This involves
the extractlon of all nonlinear (one-port) elements as
loads on a linear multiport, the loading occuring through
inserted lossless transmission lines. The algorithm given
solves the nonlinearities implicitly by iteration and
comblnes this with an explicit solution by matrix inversion
of the linear portion to obtain a complete solution.

Introduction

In most general network-analysis programs the nonlinear
elements are kept under many constraints and quite often limited
to a certain class of elements. This is necessary in order to
guarantee the convergence of an iterative method and hence the
accuracy of the solution. 1In general, algorithms for analyzing
networks fall into two categories well referenced in [i]: (a) those:
which first produce a matrix representation of the network by a
simple t;ansformation of the network into its Y or Z matrix (e.g.
YV=I, wilth Y being formed [27 through general-admittance-matrix
or cut-set methods) and solve the set of equations (YV=I say),
(b) methods which represent the network in a form suitable to
numerical analysis, e.g. %%-= Av + Bl or state-space algorithms.
Of course there are programs which employ a combination of both
techniques, but they are usually task-oriented.
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Class (a) enjoys the capability of handling almost gvery
type of circult element for which in principle there are no
more than two numerical methods to obtain the solution. These
are [37 (1) matrix inversion or the whole class of matrix
decompositions and (ii) iteration and all associated methods.
As usual in other methods a combination of (i) and (ii) is used
here and it is on this that we shall base the ,algorithm.

It should be mentioned that although class (b) has a much
larger choice of numerical algorithms, it finds itself unable to
present general methods for forming 'A' & 'B' matrices for non-
linear elements; it is also paralyzed by long computation times
assoclated with specific manipulations on A and B. Further, most

,: nonlinear procedures require a matrix of derivatives, such as a @

Jacobian matrix, which in general is either found numerically

or it is supplied by the user. We should note that numerical
differentiation adds to the "noise level" of the data and there-
fore often makes these matrices useless as correctors; hence

these methods are unattractive.

' We shall use the method previously introduced in Ref. [2]
which 1s based upon the nodal equations of the network to develop
an algorithm for partitioning the admittance matrix for nonlinear
elements. The nonlinear elements are assumed to have their graph
in the first and third quadrants. It is assumed that the reader
1s familiar with these methods of generating the admittance matrix
for passive elements with initial conditions [1 ] [27. This paper
concentrates on finding a solution by introducing transmission
lines which isolate the nonlinear elements and rearranging the
admittance matrix, after this matrix is found. Superscripts are
used to indicate the iteration index, and subscripts indicate
elements or the nature of the array or both.

Analysis of the Network

The use of matrix inversion to solve V=Y %

I, if values of
Y=[yij} depend on components of the voltage vector V, is not a

fast method for finding the voltage, assumed to be the unknown,
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nor does 1t always guarantee a solution. In fact their conver-
gence depends heavily on the presence of dominant leading diagonal
elements which can only be guaranteed if there are no dependent
sources, and the elements are all "physical"". Under-relaxation
and mean-value techniques are helpful in cases where there are
large off-dlagonal elements but the trade off is between accuracy
and computation time, proportional to the value of these elements.

To quarantee a solution we shall separate the nonlinear
elements from the rest of the circuit, by inserting lossless
transmission lines between non-linear elements and the linear
elements, so that we can 1lnvert the resultant admittance matrix
representing the linear elements ( f(v)=av, a independent of v).
This avoids the problem of iterative methods which have the
disadvantage of not always converging[3].

In place of iteration on a set of simultaneous nonlinear
equations we shall iterate on reflected waves which physically
would be travelling on the inserted lines. Because of the physical
nature of the lines a solution 1is intuitively feasible. At every
state of the iteration, assuming V(J) is the solution, we can
find the corresponding admittance matrix Y(J); by using this Y(J)
we find the next values of voltage V(J+1) and so on. Note that
if elementsare linear then Y(j) will be constant and will not
vary with voltage.

(A) Analysis of a lossless transmission line:

At this point we review the results of Branin {41 placing
them in matrix form for our purpose. Consider a single lossless
transmission line with charaeteristic admittance Yo and introduce
the followlng notation:

Vr = {vrk] > k=1,2 reflected voltage at node k.

Vi = {vik] » k=1,2 incident voltage at node k.
& V = {vk} , node voltage with respect to ground
We have
V4V, =V (1a)



It is known (413 that for the purpose of translent analysis
we can replace the transmission llne by a current source of strength
2Viy0, and an intermal admittance of Yo and further

y{md _ y(n-1)d (1b)
where d 1s the delay of the line.

We shall assume d=1, because this delay will be seen to be
independent of the time response of the network. So the circuit
of Fig. 2a) becomes that of Fig. 2b) at the n® iterative step
(i.e. t=nd).

Now let I={ik], k=1,2, be the total current entering node k,
then the equations for current for Fig. 2b) will be

1) - 1)y aoed) 2
where, for this single line,
0
C = |0 1 s I( ) = Ig
i 0 0

From Eq.'s (1)
n-1)

(n) _ (n) _qyl
Vr =V —CVr
and for the over-all 2 node network
Y(n)v(n) = I(n) (1.{.)
where, from Fig. 2b)

eI b -

Y11 Va2 o V12
Vo1 Yoz i1 =Yg T Yo Yoo T VL *t ¥
Note that C is the connection matrix and Eq. (Ib) has the form
n n-1 .
vg ) - cv£ ) (1ec)

(B) Application of transmission line and convergence criteria:
We shall first show the application of lossless trans-
mission lines to isolating a single one port element in two steps;
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case a for a linear one-port and case b for a nonlinear one-port

load. Then we will generalize to handle all nonlinear elements.
We begin by taking the network of Fig. 3a and lsolating

the load through an added transmission line, Fig. 3b). Let V.

be the true solution and'e(n)

then we will show that

be the error after n iterations

(n) _ v _y(n)
& = Vr Vr (5)
tends to zero as n-e , and also that the end voltages satisfy
_ . (n)
vy = v2 when e -+ 0 (6)

This will serve as a proof in matrix form of Branin's result [4].

In Eq. (6) the two ends of the line are at the same voltage, which
indicates that the line 1s indeed short circuited. Equation (5) iIndicates
a stable state for the transmission 1line (as e‘™/ 4 0) and hence

the end of the i1teration.

Proof that eln) 0:

From Eq.'s (2) & (4) we have

Y(n)v(n) - I(n) - I( +2yOCV£n -1) (7)
Substituting Eq. (7) in Eq. (3) we have
Y(n)v]gn) - I(O)"I'EYOCV( ) Y(n (l’l—l) (8)

The true solution, V_, must also satisfy Eq. (8), so
vy - 1oy 1y v (9)
Subtracting Eq. (8) from Eq. (9) we get

v vy o ey 1y (v vin-t)) (10)
and by definition of Eq. (5)

y(n)g(n) _ oy, I-v (™) celn-1) (11)
or e(P) o [y(n) ]‘1r2yOI-Y(“) 1eln-1)

(™t

e(n) = oy (v(m)) Ly ye(n-i)

ana &P = 2y (v rpray (vIP ) hirpee(P2) (00

always exists for "physical" elements. )
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e(m) - 31 [EyO(Y(i))’l-I1|)|e(°)l (12b)

'||' is the norm of the vector or matrix; we shall consider Eq.'s

(12a) and (12b) in the following two cases.

(a) 1In the linear case where Y(J)=Y is independent of V for all j:

-1 _ -1 _
Yo o= |ygty, O = 1/ (vyty

. ) o (13)

g
0 yutyy, 0 1/(yytyy)

Let p=r2y0Y_l-I] be a reflection coefficient matrix associated with
Fig. 2b)or
p=[py; © (14a)
0 P22
where pll=(yo—yg)/(yo+yg), has Ipllls 1
and pos=(¥o-y1,)/ (yohi, ) s has lop < 1 by passivity.
But lpii|=l practically never occurs within this theoryf{2, pp. 26-277; so

ve will assume |p,,y #1.

Then Ie(n)| = ‘nlnle(0)| where the ter-m|p|n denctes the no"

But |p|n _ |°11|n o] =0 as[pii‘¥1 (15a)

power Oflp,.

0 lﬂeel o (I’l - ‘”)
and from Eq. (5) vr-v£“)=e(n) , Vﬁn)a V,as n-o

Substituting V., in Eq. (3) gives vr=v(n)-cvr or solving for v(n)

y(n) _ (I+C)V, , noe (16)
Therefore ( )
n
v = {1 1 vrl = vr1+vr2 = Vl
1 1 VrE Vr1+vr2 v2

hence v,=v,, and Eq. (6) is demonstrated.



(b) In the nonlinear case Y(J)=Y(V(J))

We will assume for the nonlinear devices that they have
an admittance y=f(v)/v which is positive and finite for finite
nonzero v, £(0)=0. As in Eg. (13) we still can invert each y(J)
and Eq. (12b) becomes

()]~ ¢ ?rlp(j)|)|e(o)| . (127¢)
i=1
and o{9) - EEyO(Y(j))'l-I]
Now yg=fg(vg)/vg and yL=fL(vL)/vL in the non-linear case, so let
yéd)=fg(vé3))/véj) and y£3)=fL(v£j))/v£J)
As before p(j) = p£{) 0 (14b)
e
where p£i)=(y0—yéj))/(yéj)+yo) and nég)=(yo—yéj))/(y£3)+yo)
and Eq. (15a) becomes
n n
331~°(J), ) JL'“H)\ © (* 0) (15b)
n N -bes
s o)
n
and |plf,_g__)|\<1 for all j's, k=1,2 so jlrllpl(ci)[-. 0 , Nnum

Thus Eq. (16) is still valid, so as in the linear case

(n) _ _
v = (I+C)Vr or V=V, Q.E.D.

Note that in this last case even if f(v)=0 for finite nonzero v,
vi=Vy still results but physically this is not an interesting
situation.

So far we have shown the existance of the convergence of the
method, and that the Input and output voltages on the transmission
line are identical. Now we shall use the complete network by

first considering one non-linear element and extending it toc more
elements.
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(C) Network partition:
Let the network have N+1 nodes with only one nonlinear

element, yL:f(v)/v, connected betvieen nodes K and K+1 as shown in
Fig. 4); also take one node to be the ground node which is number
zero. We place two transmission lines of delay d=1 between the
nonlinear element and its terminal nodes K & K+1 and number the

new nodes, between the device and the lines, N+1 & N+2. Figure 2b)
is then applied to extract the nonlinearity, and the linear part

of the circult is analyzed [2, p. 267 to set up its nodal admittance
matrix. Using the notation in (B) the admittance matrix .

Y(V) for I=Y(V)V, will become (after the partitioning by the
transmission lines)

K
K+l
y= N
- N+1
- N+2
- 2 = y
where Yk = Yo t Vkx 0 Y(ge1) (kr1) T Yo Y (gr1) (x41)
. £{Vyr1 ~Vyao) . . F 01 Vi)

N+1 N+2

and the ? represent admittances without the nonlinear element.
For this nonlinear element the C matrix is a (N+2)

by (N+2) matrix with all elements zero except for the entries
describing the transmission lines!' positions

-H-



C&MJ=‘WﬂuchKﬂﬂﬁzzcwmﬁﬁl=l (17a)

The upper-left N by N submatrix of the Y matrix will look as
if the nonlinear element is removed and two resistors of value
Yo are connected between the K & K#l nodes and ground. If there
igs more than one nonlinear element, then in general we change an
N by N matrix to a (N+2q) by (N+2q) matrix as shown below, where
q is the number of the nonlinear elements (g=1 for the above case);
the first N by N elements of the new Y matrix, YO’ will be linear
(that is, independent of V). Note that 1f one of the terminals
of the device is connected to the ground node then we do not need

a tTransmission l%ne between ground and that terminal of the device.
Now the general C matrix is the sum of all the C's called here

Cj’ of which there are g, one for each transmission lines (connected
between the two nodes KJ and Kj+l,where the device was located in
the N-terminal network, and the nodes N+2j-1 and N+2j) and with non-
zero entries as indicated by Eq. (17a),

a )
J=1
. N
— N
0
N ¥y
¥(v) = | (17c)
]
Yl :
i Yzl 12
boc )
b
Q (N 2q
2 i
{
) Legare_
I "

For this the notatlion is as follows:



¥)= upper left N by N elements of ¥, all constant.

Vr = reflected voltage, N+2q elements but only 4q are
nonaero.
Yl to Yq = 2 by 2 matrices for nonlinear elements.
WQ)andIO = first N component of Vand I.
Vl to Vq = q last 2-tuple components of V.
I1 to Iq = g last 2-tuple components of I.

The equations are now written for the new network described
by Y and current sources that would be inserted as in Fig. 2b).
The general formula, YV = I, becomes:

Yén)Vén) - Ié“) . Yén)s e (17d)
Y{n)v£n) _ I£n)
an)vgn) _ Ién)

Equation (2) generalizes to the following with C now {(N+2q)x(N+2q)

1(n) = (0 2y cvin-t) (18)
From Eq. (174d)

vén) - (YO)_llén) (19)

Y&n)V£n) = Iﬁn) ,  k=1,2,...,q (20)
From Eq. (3)

vﬁ“) = v(“)-cvﬁn“l) (21)

where C 1s as defined in Egqs. (17a,b).

Equations (18) to (21) are a set of difference equations to
be solved which show the order of execution of the algorithm.
As at Eq. (3) V£°)=O. After Eq. (21) a test of the per unit
value of the norm of Vrn should be made and depending on the
size of the result, either the iteration terminates or it
continues by going back to Eq. (18) with the index of

lteration increased by one.
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The final solution is the first N elements of V; Eq. (12¢)
shows that the potentlal difference across theline is within
a given bound which can be determined from the iteration index
and the maximum reflection coefficients 541 which the nonlinear
elements can possess.

(D) Solution of the nonlinear 2 by 2 matrices

The linear portion of the network has been solved by
Eq. (19) by any standard linear systems technique. Thus it remains
to solve the g nonlinear 2 x 2 matrix equations (20), shown in
part (C) and derived from Fig. 2b).

£{v, -v, .2)
i Vet 0 v i
- + ¥ n K
K
5 _ F(vievyyq) ; .
0 Ve K+ ekl
L - L el . —

Here the index of iteration is ignored for clarity.
Multiplying out and letting v = Ve T Vi

f(v) + YoV = 1y
“£V) + YoVin = Len
or 2f(v) + yO(vk_vkﬁl) =1, -1, so
2f(v) + VoV = (ik - ik+1) (22)

Equation (22) describes the circuit shown in Fig.5 which can be
solved in many ways. A Newton-Raphson method can be applied to
Eq. (22), instead of solving the above 2 X 2 nonlinear matrix.
One of the advantages of partitioning is that the user can
supply a subroutine to find Vi and Vierl when ik and ik+l is given
for Fig. 5 and in doing so he can choose the most suitable method
for the device and even specify 'y_' such that Eq. (12c) gives the

fastest estimated convergence. Note that multiple valued functions



f(.) can be handled, including hysteresis, etc., if the user has
avalilable a subroutine for such as Jjust mentioned.

III. Conclusions

An literative algorithm has been given for analyzing nonlinear
networks. In the situations covered by this paper the nonlinear
elements are two-terminal elements described by i=f(v) with
f{v)/v finite and nonnegative with £(0)=0.

The admittance matrix is partitioned by employing lossless
transmission lines to isolate the nonlinearities. This in turn has
avoided the generation of ill-conditioned nonlinear matrices which
1s often a source of trouble in the solution of simultaneous
equations [37 because the 1teration results do not converge. By
inverting the linear portion YO of the admittance matrix we can
speed up the computation and limit the iteration to the nonlinear
elements, as in Part II (D). In the case of an 1ll-conditioned
matrix YO for the linear portion Gaussian nodal elimination has
this advantage over iterative methods 1n that it rearranges the
equations as it proceeds. Because of its capability in choosing
the largest element of the array as its pivot, it is one of the
best known algorithms for matrix inversion in terms of generality
and accuracy. So, by partitioning, we have been able to produce
a submatrix of linear elements which we can invert once by
Gaussian elimination and use in all of the iterations following.
Note, however, Gaussian elimination is not directly applicable to
nonlinear systems. As a consequence, it was shown that by parti-
tioning nonlinear elements 'in blocks of 2 by 2 matrices the nonlinear
portion can be reduced to a single nonlinear equation for each
block; this guarantees a result at each step of iteration. Finally
the criteria for convergence can be obtained from Eq. (12¢).

In this work all characteristic admittances were chosen equal,
but this is not necessary. Likewise, the delay of each line can
be different, but this difference will cause a fair amount of book-
keeping.
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Basic Transmission Line
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Transmission Line Insertion

Transmission Line Isolation of Nonlinearity

Resulting Nonlinear Circuit to be Finally Solved



o I —
2




(9

-

N

®

(1-v)

Nb’Oh N

w# W.; mw_:-._._;oa _mw of m: @F ._E_w . om\._w @F

o

BTN

e

® O




(¥






04/ _.._“x_ AO

9%/

(A)i=l

%/1

Ou ok %M .




