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ABSTRACT

Richards' theorem imparts its strength,
Using lines of integral length,

To realizations, type non-rational,

Of n-port circuits, non-reciprocal.
One-way transmission filter exampled
Detalls much of the theory included,
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I. INTRODUCTION

Until the advent of Richards' one-port transmission-line synthesis
of 1948, [1], there was no rigorous means of designing distributed
parameter networks. Following the appearance of this synthesis it was
modified in various ways to cover specific structures, as well as
transfer functions, [2], [3], [4], while other useful, but less
exact methods also appeared, [5]. More recently, Saito, [6], gave =
two-port transmission-line synthesils based upon Bayard's matrix
extension of Richards' theorem, [T, p. 1701. However, none of these
methods covers the synthesis of pon-reciprocal, distributed parameter
circuits, which are becoming of importance in meny contexts. In
particular, this is the case in parametric amplifier design.

Here we develop the theoretical aspects of non-reciprocal,
registor, lossless transmission-line n-ports, under the customary
assumption of rationally related line lengths. Of course, we assume
linearity, passivity and a finite number of elements. Transformers
will generally be allowed but their number is to a large extent
minimized.

In Section II we develop the properties of the types of networks
under discussion. The n-port unit-element is defined and Kuroda's
identity extended. In Section IIT the synthesis, which is based upon
the recent generalization of Bayard's version of Richards' theorem,
[8], 15 given.

Before proceeding, we introduce some necessary notation. 0n and 1n
stand for the n x n zero and identity matrices, respectively; + denotes
the direct sum; PR stands for a retional positive-real matrix, (8, p. 11];
‘a8 superscript tilde, ~, denotes matrix transposition; a subscript
asterisk, y, denotes Hurwitz conjugation, that is, replacement of the
complex frequency variable, p, by -p; finally, & denotes McMillan's
degree of a rational matrix, [9, p. 543].
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II. PROPERTIES OF TRANSMISSION-LINE n-PORTS

Consider an n-port which i1s constructed from resistors, gyrators,
transformers and lossless transmission-lines whose lengths are all
rational multiples of each other. We can then choose the lengths such
that they are all integral multiples of some base length, which is in
turn one-half wavelength at some fixed frequency fo. Any one of these
lines of length £, if we take ports at opposite ends of the Jline, can

be considered as a two-port, as shown in Figure 1.

O_ﬂ\::, ﬂ =i/—*o

Zq —0

FIG. 1, LOSSLESS LINE

If the line inductance and capacitance are L henrys/meter and C
farads/meter, the characteristic impedance is Z0 = /L/C. If the line
is m half-wavelengths long (at fo), then £ = m/(EfOJEE), and the line
is described by the impedance matrix (Appendix A)

Z ctnh(ms/Efo) csch(ms/Efo) (1)

csch(ms/Efo) ctnh(ms/Efo)

where s = o+jw, = 2nf, is the actual frequency. When, as in the case
under consideration, m is an integer, the impedance matrix of (1) is
rational in exp[s/EfO], and if we let
s/2f0
e = [L+pl/[1-p] (22)
which is
p = tanh(s/hfo) (2b)
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(l) becomes rational in p. Consequently, under the transformation of
(2), any of the standard linear descriptions of the n-port become
rational in p (since only "rational" operations are involved with
rational "loop" matrices). Further, these descriptions satisfy the
normal realizability conditions, since p, by (2b), is a positive-real
function of s; this would not be the case if the right of (2a) were
replaced by p 1itself.

Of course (1) is valid for non-integer m anpd the quarter-
wavelength line, for which m = 1/2, has considerable interest. For it

(1), under (2), becomes

Zm(®) =|2./p Jl-pEZO/P (3)

[ 2
1-pZ /p Z./P

Even though this isn't rational, it is of considerable importance, since
it forms the basis for the n-port unit element. To see this, consider the
2n-port of Figure 2 where all lines are a quarter-wavelength long and
initially assumed uncoupled.

| zol I
L] I L J [ ]
e | » Io A o— UE —10
. . | . = A
| ° —o
\ I
n | 2n
Lop —71°
|
| I
N |
FIG. 2. n-PORT UNIT ELEMENT
Defining the diagonal characteristic impedance matrix by
ZO = ZOl + ovee + Zon (%)
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(3) shows that Figure 2 is also described by (3) with Zyp DOV &
2nx2n matrix written in partitioned form. If the lines in Figure 2 are
mutually coupled, then (3) can still be used to describe the 2n-port,
when Z0 is taken as a (symmetric) positive semi-definite matrix. In
either case, coupled or not, the 2n-port of Figure 2, when considered in
the p plane, will be called a unit-element and denoted as shown on the
right of the figure. It is of interest to recogpize that the admittance
matrix of the unit element has the same form as (3) except that Z, is
replaced by Y = Z;l and the (1,2) and (2,1) terms are multiplied by
-1.

If now we connect an n-port on a unit-element, as shown in Figure 3
vhere the impedance matrices Zi and Zﬂ are defined, we find (Appendix

B)

2,(p) = 2,[p2,,(p)+2. 17 [z ,(p)sp2. ] (52)
which is

2y(p) = [0z -2, (p)1[p2, ()21 7'z, (5b)

o | UE [T O0——

l o——1 %o

Zi Z"B

FIG. 3 LOADED UNIT-ELEMENT

From (5a) it is observed that Zi is rational in p, when ZB is, even
though there are some quarter-wavelength lines present. Some simple
€quivalences result from the connection of Figure 3. For instance, if
the load consists of shorts, then (5a) with ZB = 0n gives Zi = pZO,
and the configuration acts as an inductor n-port, in the p-plane. If
the load consists of opens, & dual treatment shows that the input
behaves as a capacitor n-port, Yi = pYB. These equivalences are
1llustrated in Figure 4.
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illustrated in Figure 5.

b)

FIG. 4. p-PLANE EQUIVALENCES

interest are the n-port Kuroda identities

The first of these is proven in Appendix C,

while the second follows in several ways from the first, for instance

by duality or exchange of input and cutput.

Z=pL YepYoL(Zg+L) !
© UE 022 —0 . o—p—o— v |—o°
Z = T Zn”“
o 0 o ) o ) —o0
a)
| = -
© _En_4 O T o o o YO o
Y=pC b) Z=pZoC(Yo+C) - "

FIG. 5. n-PORT KURODA IDENTITIES

ITI. SYNTHESIS

The types of networks under consideration can be specified in

several ways, the most genmeral of which is through the scattering matrix.
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We will therefore assume that an m x m scattering matrix, S(p), is
given which has been made rational by the transformation of (2v).
However, the synthesis will be based upon the impedance matrix, Z{p).
Consequently, we find & T, es can elways be done, such that

TST = 8, + 1, _ps for vhich the nxn scattering matrix S has 1 -5
non-singular, [10, p. 152]. The impedance matrix is then found from

2(p) = 2[1,-5 (p)17 1, (6)

The network for S then results from that for S0 by adjoining open-
circuits through a transformer realization of T, [10, D 153]; of
course for the important case of m=n no transformers are present.

Given such a Z(p), which is PR, we then apply the ideas of a
previous report, [11], and derive from Z the (n+r)x(nt+r) impedance
matrix X(p) of a lossless network, that is, X=-§* and X is PR; r 1is
the rank of Z+E*. A realization for Z +then results from onme for X
by terminating the last r ports in resistors.

Several methods are available for syntheslizing X. The first, and
somewhat trivial way, is to synthesize X in the standard manner using
L's, C's, gyrators and transformers {in the p plane), {12, p. 155].
The inductors and capacitors are then converted into transmission lines
through the equivalences of Figure 4. This method generally uses an
excessive number of transformers and the transmission lines don't occur
in as useful combinations as in the following cascade type synthesis.

Observing (5b) we see that the loaded unit-element gives z; in
terms of ZB through the use of the Richards' theorem for matrices,
{8, Eq. (4f)], 1f k = 1 is chosen. Noting that Richards' theorem
requires the matrix to be symmetric at p = k, we first extract series
gyrators by writing

X(p) = x(p)-x_(1) (1)

where EXSS = X-X is the skew-symmetric pert of X. A unit-element is then
extracted by forming
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%,(p) = [pX(1)-X(p)[pK(p)-X(1)]7%(1) (8)

whenever the requlred inverse exists. XE is PR, by the cited Richards'
theorem, and Figure 3 shows that forming Xz does correspond to the
extraction of a unit-element. Further, B(Xg) = 5(2)-n, [8, p. 71, ang,
as & .consequence, the repetition of this procedure leads to a matrix of
degree zero, which can only be On’ since 1t must be constant and

X = -i*. This has assumed that the inverse present in (8) exists, which
mey not always be the case. However, singularity of [pX(p)-X(1)] can bve
taken care of &3 follows. We can extract any pole at zero of i(p) by

vriting, using a partial fraction expansion, say,
X(p) = X (p) + &/p (9a)
where i; is analytic at p = 0. Then
pX(p)-X(1) = pX (p)-X (1) (9b)

which has the rank of E;(p), as is seen by considering a Taylor series
expansion near p = 1 and noting that this then has the rank of
Bi;(l)/ap which is the same rank as that of i;(p) by rationmality end
analyticity. Then, if i; has rank k < (n+r), the A/p term can be
separately realized by Figure L4b) and connected in series with a realiza-
tion for f;. i; can be realized by writing, [10, pp. 66, 84],

EQEQ(P)TO = Eg + 0u+r-k (lO)
The Richards' transformation can be applied to the PR matrix i; and the
above procedure continued with T0 being realized by transformers.
Kuroda's identities then sometimes become useful for converting the
Series combinations into cascade connections. The form of the
realization for X, when the Richards' transformastion can be performed

at every step, is sketched in Figure 6.

-7 - SEL-62-115



o——jsyratersf— yp —{Evretersly g ——:I

x— ] xan [
[
X L

O
—
X, (1) X

FIG, 6. CANONICAL REALIZATION OF X

In the matrix case, sometimes the Richards' transformation yields a
reduction in degree when applied directly to Z, {8, p. 7]. 1In such
cases the extra steps involved in finding X can be avoided. However, as
yet, the conditions on Z for this degree reduction aren't known.

The following example illustrates almost all of the interesting
points of the synthesis.

EXAMPLE:

It is desired to design s low-pass, one-way, matched, 3rd order
Butterworth, transmission-line filter; perhaps for an antenna feed.

Such is described by

s{(p) =[0 0
— L 5
p3+2p2+2p+l
which has, by (6),
z(p) =1 0
2 1

p3+2p2+2p+l
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then, using the Case 1 method of [1l],

This has

and

S

5 P +2p2+2p+l 0
1]

]

R S p>
]

' oopfil 0
E 2

E 0 2p°+1
3 0
Q.1

0 o0

0 0

E 2p2+1 0

1

1

' 2 2

b1 gp@-ﬂ

r --------------------

E 2p2+1 0

: 2

i 0 2p +1

This is singular with the third row and column equal to the first.
After deleting this row and column, (8) glves

o
Q

O

'.-J

ol+|o0 ) 5 -1
0 o ___. 0.1 _-5/3
]
1 5/3) o©
SEL-62-115



The final realization is shown in Figure T, where one of the gyrators
and one of the shorted lines, both in the Xz portion, could be saved by
the use of appropriate transformers. Because of the singularity of the
inductance and capacitance matrices, the series combination used to
realize X£ can't be reduced by the Kuroda identities to cascade form.

o L0 e ] N
Qunl N e ==
I

J

IO-UI
[~
("N - -]

=
i

@

e ——
1 | T\\"'T;"__//-To_—
| | | __]__202.40_

FIG. 7. 3RD ORDER BUTTERWORTH ONE-WAY FILTER

IV. CONCLUSIONS

In this report a synthesis of non-reciprocal resistor transmission-
line synthesis has been given. Although several alternatives exist, the
method using the Richards' transformation seems the most useful, since a
tascade type realization is obtained. Although, at higher frequencies
transformers aren't such a nulsance as at lower frequencies, they may be
required at several places. Trensformers pay be required when converting
S to 2 or, at a more bothersome point, in realizing some Zo's for
unit-elements. As yet we are unaware of any study on which Zo's can

be bhysically realized without transformers, but a congruency transforma-
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tion allows any symmetric, positive semi-definite Zo to be realized from
a diagonal one by the use of transformers (Appendix A shows how L and C
are affected by such a transformation in the positive definite case).
The use of Kuroda's identity as mentioned in Section III and
jllustrated in Figure 8, will sometimes lead to a more useful structure.
However, a5 was seen in the last cycle of the example, singular matrices
may hamper its application. But one does feel that the trouble caused
by such singularities could somehow be avolded. It would also be useful
if a1l the gyrators could be removed at an initial or final step, since
then the unit-elements shown in Figure 6 could be more conveniently
connected together physically. However, serles and shunt connections can
be physically reaslized by the use of Grayzel's connection, [3, P. 173],

generalized to n-ports, where possible.

Z=plL L

o‘iﬂﬂﬂf_—il_Y c O—0r— yE [—
=p

O—J o | c-l |

{by Figure 4b)

00— UE

YepCL(C-lsp)-1
o—duecy T " F

(by Figure 5a)

i

o | UE UE C

I

o—lL+c-1 (e Ll o

{by Figure 4b)

FIG. 8. APPLICATION OF KURODA'S IDENTITY

At (2b) we used the transformation p = tanh(s/hfo). This is
appropriate to low- or high-pass designs. However, the transformation
p = Ctnh(s/hfo) also can be used and it seems to be the most appropriate
for band-pass or band-stop designs. The use of this latter transforma-

tion replaces p by]/p and thus gives dual results in the p-plane.
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APPENDICES

APPENDIX A: Lossless Transmission Lines
The lossless transmission line of Figure 1 is described by the two

{dual) equations

ov{x,t) _ 9i{x,t)

X L (A-la)
ai(i't) - ?%%ﬁ_) (A-1b)

where v and i are the current and voltage on the line, t is time, and
x 15 distance down the line memsured with respect to port one.
Taking the bilateral Laplace transform with respect to time ylelds

dVd; 8) _ -sLI(x,s) (A-2)

and its dual. Here we have replaced the partiasl derivatives by total
derivatives, which allows the time differentiation to go into multipli-
catlon by s, and is justified, since x and t are independent.
Differentiating (A-2) with respect to x and using the duasl equation
yields

EE!LELEL = seLCV(x,s) (A-3)

dx

This can be solved using the unilateral Laplace transform in conjunction
with (A-2) evaluated at x = O to give

V(x,s8) = cosh(s/ICx)V(0,s) - JLC-l sinh(s/ICx)1(0,s) (A-ka)
I(x,5) = cosh(s/ALx)I(0,s) - oLt sinh{s/CLx)V(0,s) (A-4b)

Where the second follows by duality from the first. Defining

-1
ZO = LC (A'5)

5L SEL-62-115



Letting Vy(s) = V(£,8), Vy(s) = ¥(0,8), T,(s) = -I(4,5), I,(s) = 1(0,s)
and solving (A-4) for the voltages in terms of the currents yields

v, 7] = 2, ctnh(s/LCL) csch(s/ICL) _Il (A-6)
v, esch(s/ICE) ctnh(sv/IC2) I,

which gives the impedance matrix for the line. A wavelength is defined
at 8 given frequency f by A = 1/(£/IC), and thus, if the line is m
half-wavelengths long at the frequemcy f_, then £ = m/(zfo/ﬁ ).

If we have a 2n-port of coupled lines, then (A-1) remsin valid with
v and 1 n-vectors and L and C coefficlent matrices. Assuming these
latter positive definite 1L and C'l can be simultaneously diagonalized
by properly choosing T in the following equations, [13].

v, = Tv (A-Ta)
1="Ti, ' (A-Tb)
L. = TLT (A-Tc)
d ")

C; =T CT (A-7d)

We also define the diegonal characteristic impedance matrix
l]1/:-3

Z = [ded

X (a-8)
d

If ell lines are & quarter wvavelength long at some frequency f o’ Ve then
obtain, in partitioned form,

Vial= ctnh(s/hfo)zod csch(s/hfo)Zod Ia (-9}
Voa csch( s/hfo )ZOd ctnh(s/hfo)zod e

where the functional multipliers of Z can be taken as scalars.
Defining °a
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z =7ly ot (a-10)
o o4

shows that, in this case, the coupled lines can be described by the

jmpedance matrix in (A-9) when the subscript d's are omitted. Note

that here Z, = 5-1[%LT§C'LT]I/2T—1 which is not (A-5) with scalars
replaced by matrices; this latter replacement causes trouble in previous
works, [141, [15].

APPENDIX B: Loaded Unit-Element

In this eppendix we derive equations (5). For this define voltage
and current variables for the network of Figure 3, such that

f 2
AR Zo/p 1-p Zo/P I (B-1)
=3
v, - 2 /p z/p ]I,
v, = -2,(p)I, (B-2)
Eliminating V2 from these two gives
2
[-Zg(p)—Zo/p]IE = [Jl-p Zo/p]Il (B-3a)

Substituting this in the first of (B-1) gives

v, = [z /p) + (J1-2"2 /p)(-2,(p)-2 /) ({102 /D)), (B-3v)
= 2 [2,(p)+2_/p1 7 (2 (0)+(2 /p)-(1-°)2 /p]1, (B-3c)
= ZD[pZE(p)+ZO]-l[ZE(p)+pZD]Il (B-3d)

which is (5a). Setting the coefficient matrix of I. equal to Zi glves

1
[pZ£+ZG]YUZi = Z,4pZ, (B-ka)
or
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- = - B-4b
z,lpY 2,-1.1 = p2 -2, ( )
which is (5b) after multiplying by the eppropriate inverse.

APPENDIX C: n-Port Kurods Identity
Consider the left-hand network of Figure 5a). This is described by

the impedance matrix

z(p) = |2/ hs?2 /o (c-1)

2
-0z /p pL+Z /P

Inverting this gives
- 2 -1
Wp) = | (L) o /o) -2z L) YR | (c-2)

-1 -1
- -pﬁ(ZO+L) /? (z+L)""/p
Since Z is symmetric, we see thet the (1,1) term of this is also equal
to YoL(ZGH..)--:L since Z_ and L are symmetric, by the PR assumption.

This matrix is easily seen to describe the right-hand network of
Figure 5a).

- 16 - SEL-62-115



10.

1l.

12.

REFERENCES

P. I. Richards, Resistor-Transmission-Line Circuits, Proceedings of

the IRE, vol. 36, no. 2, February, 1948, pp. 217-220.
H. Ozaki and J. Ishii, Synthesis of Transmission-Line Networks and
the Design of UHF Filters, IRE Transactions on Circuit Theory, vol.

CT-2, no. 4, December, 1955, PP- 325-336.
A. I. Grayzel, A Synthesis Procedure for Trensmission Line Networks,

IRE Transactions on Circuit Theory, vol. CT-3, no. 3, September,

1958, pp. 172-181.
H. Ozaki and J. Ishii, Synthesis of a Class of Strip-Line Filters,

IRE Transactions on Circuit Theory, vol. CT-5, no. 2, June, 1958,
pp. l0Ok-109.

W. W. Mumford, Maximally-flat Filters in Waveguide, Bell System
Technical Jourmel, vol. 27, no. 4, October, 1948, pp. 68L-T13.

N. Saito, A Coupled Transmission Line Filter, The Journal of the

Institute of Electrical Communication Engineers of Japan, vol. bk,
no. 7, July, 1961, pp..1036-1040.

M. Bayard, Théorie des réseaux de Kirchhoff, Editions de la Revue
d'Optique, Paris, 195.

R. W. Newcomb, Richards' Theorem for Matrices, Stanford Electronics
Laboratories, Technical Report No. 2254.1, July, 1962.

B. McMillan, Introduction to Formal Realizability Theory-II, Bell
System Technical Journal, vol. 31, no. 3, May, 1952, pp. 541-600.
R. W. Newcomb, Synthesis of Non-Reciprocal and Reciprocal Finite
Passive 2N-Poles, Ph.D. dissertation, University of California,
Berkeley, 1960.

R. W. Newcomb, A Bayard Type Nonreciprocal n-Port Synthesis,
Stanford Electronics Laboratories, Technical Report No. 2254-2,
August, 1962.

Y. Oono and K. Yasuura, Synthesis of Finite Passive 2n-Terminal
Networks with Prescribed Scattering Matrices, Memoirs of the Faculty

of Engineering, Kyushu University, vol. 14, no. 2, May, 1954,
Pp. 125-177.

- 17 - SEL-62-115



13.

R. W. Newcomb, On the Simultaneous Diagonalization of Two Semi-
Definite Matrices, Quarterly of Applied Mathematics, vol. 19, no. 2,

July, 1960, pp. L#4-1L6.
S. 0. Rice, Steady State Solutions of Transmission Line Equations,

Bell System Technical Journel, vol. 20, no. 2, April, 1941,

pp. 131-178. In this ' = v/ZY is stated, but this is not made
precise and calculations are restricted to special cases, pp. 135-
137.

L., A. Pipes, Matrix Theory of Multiconductor Transmission Lines,
Philosophical Magazine (London, Edinburgh, and Dublin}, vol. 2k,

geventh series, July, 1937, pp. 97-113. Here ZY = YZ is

incorrectly assumed, p. 102; it is for this reason that Rice, [14],

introduces I'® = ZY and I''° = YZ.

- 18 - SEL-62-115



