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ABSTRACT: Bebvitch (1) haa shown that, starting from a given paseive, rational, n x n 

scattering muttix S( p) of degree 6, one can proceed to a realization by factoring it in the form 

S(P) = S,(P)S,(P), 

where S,(p) is an n x n, lorrslees acaltering matrix of degree one, while the degree of S1(p) 

is redwed to 6 - 1. Some su.cient conditiona allowing the stated jactorizution were developed 
by Youlu (2) and Belevitch (3) but complete necessary and su.cient condiGons were not 

obtained. Complete conditions are derived here by two different and complementary methoda, 

one based on Hankel matrices, the other on the Smith-MacMillan form. Moreover, several 

errors of the above-mentioned papers are corrected. The resulting condilions are quite Bimpb 

and only involve the structure of the reaiativity matrix of the given network in the neighborhood 

of a singularity. Finally, the conditions clarify certain aqvecta of the cascade 8ynthesis of 

passive n-ports and &crease the similarity of this process with the Darlington one-port 

synthesis. 

I. Introduction 

The scattering matrix S(p) of a linear passive time-invariant lumped 
n-port is bounded and rational. The matrix is, in addition, para-unitary if 
the n-port is lossless. One method of network synthesis, initiated by 
Belevitch (l), operates by factoring the prescribed n x n matrix S, of degree 
6, into the form 

s = x,x,, (1) 

where S, is a bounded para-unitary matrix of degree 1 and where the degree 
of 1.9, is reduced to 6 - 1. Some sufficient conditions allowing such a factoriza- 
tion are described by Youla (2) and Belevitch (3), but the conditions stated 
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under contract AFOSR F44620-67-C-0001, the National Science Foundation under 
Grant GK 1956 and the Office of Naval Research under contract NOOOlP69-A-0200- 
1050. The &rat. author is also indebted to the ESRO and NASA organizations for 
their support through an ESRO-NASA Fellowship. 
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as necessary and sufficient in the above references are incomplete and 
partially incorrect. The main purpose of this paper is to correct and com- 
plete the latest and most detailed publication (3) with respect to the factoriza- 
tion conditions and their consequences for synthesis. Frequent reference will 
thus be made to (3) (under the abbreviation CNT). 

We will use the upper star (*) to indicate a complex conjugate, the upper 
tilde (“) a Hermitian conjugate and the upper circumflex (^) a para Hermitian 
conjugate, that is 

The + will indicate a direct 
As mentioned in CNT, p. 

the form 

A(p) = A( -p,*). 

sum of matrices. 
330, there is no restriction in assuming for S, 

s, = ln-$$ 
0 

(2) 

where u is an n-vector normalized to 

Gu = 1 (3) 

and where 01~ = Rep, > 0. It is also known that S, is bounded with S if and 
only if the vector u satisfies 

S(po)u = 0. (4) 

The following discussion is therefore limited to the determination of the 
necessary and sufficient condition for degree reduction. 

II. The Degree of a Rational Matrix 

The degree of a rational matrix has been defined by McMillan (4) and 
further discussed by many authors (5-8). A different approach, originating 
from dynamical system theory and using the Hankel matrix, is due to 
Youla (9), Ho and Kalman (10) and Ho (11). A detailed account of both 
methods can be found in CNT, Ch. 8. Since a bounded matrix is regular at 
infinity, we only quote here below the essential results holding in that case. 

(a) Let pi denote the distinct poles of a rational matrix A and let Ai be 
the corresponding principal parts (unipolar components) of A. The degree 
of Ai (called the degree of A at pi) is noted as Si. One has degA = z:Si. 

(b) Let A = PM& where M is the Smith-McMillan form of A and. where 
P and Q are unimodular (see CNT, p. 406). If A is regular at infinity, 
deg A = deg M. This equality also holds for the local degree at each pi. 

(c) The degree of A at pi is the highest possible power of p -pi occurring 
in the denominator of any minor of A. 

(a) If 

Ai = 2 Km-s 
8=1 (P-Pi)“’ 
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ai is the rank of the Hankel matrix 

(6) 

of dimension mn. This matrix will be called the Hankel matrix at the pole pi. 
The following additional properties correct certain statements of (2, 3) : 
(e) Express M as a direct sum M, i_ Mb where all entries of M, are infinite, 

whereas Mb is finite, at p+ The dimension t of M, is the span of A at pi. In 
relation with (c), poles of the minors of A, when these are computed by the 
Binet-Cauchy theorem, only reach the maximum order ai when they use 
at least the first t rows and columns of M, so that only minors of order 
greater than t of A (the inequality cannot be replaced by an equality) can 
have a pole of order 6,. 

(f) Although the principal value of M at pi is M,+ On+ this matrix is 
generally not the Smith-McMillan form of Ai. In other words, if Pz and Qi 
are the values of P and Q at pi, respectively, one does not have 

Ai = Pi(Ma f- On-l) Qi 

because some entries of P or Q may vanish at pi and thus destroy some 
principal values in entries of Ai. This occurs for instance at p = 0 in the 
example 

[ 

UP” 

l/P 

l’pl;l’p]= [; y] [ 

ZZZ. First Criterion for Degree Reduction 

Since (1) is equivalent to fl = &fll and since & = 1, + 2~y,,uiZ/(p -p,,) is 
finite for p # p0 and nonsingular for p # -pt, all poles distinct from p,, in 
fi and ~!?i are identical with identical degrees. Using the fact that Jz = S;l 
an increase of degree from 8, to fi (hence a decrease from fl to 8,) can thus 
only occur at pO, and is at most of one unit, by the Binet-Cauchy theorem. 
It is therefore sufficient to investigate the conditions of degree reduction 
in the form deg S, fl< deg 8, locally at pO, on the matrix 8 to be noted A. 

The condition is given by the following theorem: The inequality 

deg(I,-s) A<degA (7) 

at p,, #m is equivalent to the existence of a vector c(p), analytic near pO, 
such that 

limAv=u#O; limv=O, 

all limits being taken for p tending to p,. 

(8) 
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Before proving bhe theorem we note that (8) implies A(p,) = 00, a known 
necessary condition, for otherwise one would have lim Au = A (p,,) lim v = 0. 

Let A = PM& with M = 3~~ + Mb as in Section II. By the transformation 
P-l . . . Q-l, (7) is equivalent to deg BM < deg M with 

B = 1, - 2or0 P-luGP/(p +p;). 

This inequality is satisfied if and only if all minors of BM have degrees 
smaller than the one of M at po. Since the only minors of BM which could 
reach the maximum degree originate from minors of B using at least the 
first t columns, the degree inequality holds if and only if the first t columns of 
B have rank <t at po. This is equivalent to the existence of a vector x 
partitioned into xa x= 

[ 1 , x, # 0, x#, = 0, (9) 
xb 

such that Bx = 0 at p,. This condition is (1, - P;luiiP,) x = 0 where 
PO = P(p,) is finite nonsingular and is thus equivalent to (1,-u&) Pox = 0. 
Since 1, - ~6% has rank n - 1 and since (3) gives (1, - ~6) u = 0, the only 
solution of the last equation is 

P,x = u. (10) 

Bloreover, the first condition (9) is redundant, since x = 0 would give u = 0 
in contradiction with (8). 

The existence of a vector x with xb = 0 is equivalent to the existence of a 
vector y(p), analytic near pO, such that 

1imMy =x #oo; limy = 0. (11) 

From (lo), one deduces xb = lim Mb yb = Mb lim yb = 0 since all factors are 
finite. Conversely, to deduce (11) from the existence of a finite x with 
xb = 0, define y(p) by ya = M;lx,, yb = 0. Since all entries of M-l vanish 
at p. whereas x, is finite, this gives lim y = 0. On the other hand the first 
equation above, equivalent to x, = M, ya for p # p,, has the analytic con- 
tinuation x, = lim M, ya at pi. Since xb = yb = 0 and since Mb is finite, the 
last condition can be extended into x = lim My. 

By combining (10) and (11) one obtains P,(lim My) = u. Since both factors 
are finite, (11) is equivalent to 

limPMy = u; limy = 0. (12) 

By the substitution 

Y = Qv (13) 

the conditions (8) and (12) are equivalent, since Q is finite non-singular. 
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IV. Second Criterion for Degree Reduction 

A different, but equivalent form of the condition for degree reduction can 
be derived from the ranks of the Hankel matrices. The condition is: 
inequality (7) at p0 #co is equivalent to the existence of a non-zero vector 
x with nm components such that 

TX = z, (14) 

where T is the Hankel matrix of A at p, defined as in Eqs. (5)-(6) and where 

0 

Z= . II 0 * 
(15) 

U 

The unipolar component of X, A = C = [l, - 201,uE/(p +p,*o)] A at p,, is 
deduced from the unipolar component of fi = A, of the form (5) with pi = p,, 
by replacing (p+p$)-1 in the expression of C by its Taylor expansion in 
powers of p-p0 and by regrouping the terms of identical powers. The 
Hankel matrix Tl of C is then deduced from the one (6) of A by 

with 

U= 

1,-U& 0 0 0 . . . 

uG/Zol, 1,-u& 0 0 . . . 

- UC/( 201,)2 uG/ZcQ I,-UG 0 . . . 

u’1?./(2cQ -?,&/(ZQ U?Z/Zara 1,-z& . . . 

( - l)m uq(zaJ=-l . . . . . . . . . I,-UZ 

T,=UT 

The condition for degree reduction is rank Tl < rank T, hence the existence of 
non-zero vectors x and z such that (14) holds with 

T,x = 0. 

By Eqs. (16) and (14), Eq. (18) is 
u.2 = 0. 

If the mn-vector z is partitioned into a number m 
Eq. (19) becomes, owing to (IT), 

(1% -uqz, = 0, 

u?Zzo/2010 + (1, - 7.G) z1 = 0, 

. . . . 

(16) 

’ (17) 

(18) 

(19) 
of n-vectors zO, zr, . . . , z,_+ 

i 

(20) 

The general solution of the first equation (20) is z0 = Xu, where X is an arbitrary 
scalar and where u is normalized by Eq. (3). Substituting this value of z0 in 
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the second equation (20) premultiplied by G, and using Eq. (3), one obtains 
X = 0, hence z,, = 0, so that Eq. (20) is reduced to a similar system with one 
equation less. By recurrence one proves that the solution of Eq. (20) is 
Eq. (15). 

An alternative proof of the second criterion is now given by establishing 
its equivalence with the first criterion. Write p-p,, = E and consider the 
unipolar component 

Ko/sm + K&P-~ + . . . K,_& 

of L? at p,,. Owing to the second relation (S), the Taylor expansion of v is of 
the form &x0+&2x1+... . The first relation (8) is then verified if and only if all 
terms with negative powers of E cancel in the product Au and if the constant 
term is W. This proves that Eq. (8) is equivalent to the relations 

K,x, = 0, 

Klxo+ K,,x, = 0, 
(21) 

. . . 

K,_lxo+ . . . + Kox,,_l = u, I 

which are simply the expanded form of (14-15). Consequently, by solving 
Eq. (21) we obtain v, and have hence interrelated the two methods. Note 
that Eq. (21) shows that the vector Z, which gives u, is a linear combination 
of the columns of T; this allows for convenient computation of u. 

V. Degree Reduction for Impedance Matrices 

Instead of applying (8) to the matrix 8 considered in Section III one may 
add an arbitrary constant finite matrix. In order to obtain relations in terms 
of the impedance matrix, we set A = f?- 1, and w = Au so that the first 
relation (8) becomes lim w = u. If (8- 1,)-l exists (if the n-port has an 
impedance matrix), v is (8 - 1,)-l w, and the second relation (8) becomes 
lim (8 - 1,)-l w = v. Finally, (8) is equivalent to 

lim(l,-8)-lw = 0; limw = u # 0. (22) 

In the cascade synthesis [CNT, sec. 11.241 of a passive n-port of prescribed 
(posit,ive) impedance matrix Z(p), S is normalized to g,, where 2, = Z(p,) 
with Rep, > 0, by 

X = R,*(Z -2,) (2 +.&-l Rt (23) 

where R, = (2,+5?,)/2 and where Ri denotes the hermitian square root 
matrix. Since (23) produces X(p,) = 0, (4) is satisfied with any U. By the 
criterion of Section IV, the only condition for degree reduction is then the 
existence of a pole of s^ at p 0: one then has K,, # 0 in (21) and a solution 
u # 0 is produced, for instance, by x0 = x1 = . . . = x,,_~ = 0 and x,,_~ # 0 
an arbitrary vector which does not anihilate K,,. Equivalently 1, -8 must 
have a pole at pO. Since Eq. (23) gives 

(1, - it?-1 = R,-*(i8 +Z,J R,-+/2 (24) 
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the only condition for degree reduction is that (.5?+Z,)-1 must have a. pole 
at pa, and it only remains to determine the vector u by Eq. (22) which 
certainly has a solution. With the notations 

h = cutR,tu; g = ci$R,*w (25) 

and remarking that from Eq. (4) we had to choose the normalization such 
that 

%h = -@A,) h (26) 

the conditions (22) are transformed by (24) into 

lim(Z+.5?)g = 0; limg = h # 0 (27) 

where 2, has been replaced by limZ, for Z is analytic in Rep > 0. We now 
see that an all-pass section of degree one can be extracted from Z at any 
pole p0 of (Z+Z)-l in Rep > 0, and its parameters are determined by (27), 
or an equivalent condition in terms of Hankel matrices. 

VI. Transmission Zeros 

For any two complex frequencies p, and pB of a lossless n-port such that 

Pg = -P,* 

corresponding voltages and currents satisfy : 

(28) 

~p,+qq:,i, = 0. (29) 

The proof consists in verifying (29) for all separate lossless components 
(L, C, imaginary resistances, ideal transformers and gyrators) and noting 
that interconnections merely cancel pairs of terms in the sum of the separate 
equations. Relation (29) is obviously equivalent to 2R( p) = 2 +z = 0 if 2 
exists. 

For a dissipative n-port, the above theorem is not true, but may be valid 
locally for some par (then also for -p,*). The n-port is then locally lossless 
if i and v are both not 0. Let 

Au = Bi (30) 

be the equations de&ring the n-port, where A and B are square polynomial 
matrices of order n, left coprime if the n-port is completely controllable. 
Relations (30) for frequency pa and (29), form a homogeneous system of 
n+ 1 equations in the 2n-vector formed by v, and i,. The matrix of the 
system of equations must then have rank n at most, and a non-zero row- 
vector [f*, 21 exists, where 5 is a scalar and x an n-vector, such that 
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Or 

f*Q = -2A,; <*v/ = ZB,. (31) 

Moreover, one has [ # 0 in (31), otherwise A, and B, would not be left 
coprime, so that one can set .$ = 1. On the other hand, the conjugate trans- 
pose of Eq. (30) for frequency p/ is 

Z$/-fi,& = 0. (32) 

Eliminating K1 and cP between Eqs. (32) and (31) with 5 = 1, one obtains a 
homogeneous system in the row-vector x, and this yields the condition 

det (A,Bg+B,Afl) = 0. (33) 

Since A, is A(p,J to be simply noted A, A, is the conjugate transpose of 
A( -p,*) which is A^. Consequently the points of local losslessness are the 
roots of 

det (AJ?+ BA) = 0. (34) 

We now prove that an n-port having an impedance matrix 2, such that 
2 and 2 +2 have normal rank n, is locally lossless at the poles of (2 +2)-l, 
and at the poles of Z on the imaginary axis, and nowhere else. Since 
2 = A-1B and 

(2 +.5?-l = AC-i A (35) 

with C = Al? + B$, every finite pole of (2 +2)-i is a zero of det C, because A 
and C are polynomial matrices. Conversely, a zero of det C certainly pro- 
duces a pole of (Z+z)-l when A and A^ are both non-singular. We prove, 
ab absurdo, that this is still true if only one of the matrices A or A is singular, 
for instance the second one (the proof is similar in the opposite case). If 
G = (Z+.!Y?-~ were then finite, so would be F = A-l G = C-l A. From the 
resulting equation A = CF and det C = 0, one concludes that a row-vector 
5? # 0 exists such that 55’ = 0, ZA = 0, hence also bB = 0 by the definition 
of C and the non-singularity of A^. The last two relations are, however, 
impossible since A and B are left coprime. 

If A and A^ are both singular, and this can only occur on the imaginary 
axis (including infinity) so that upper circumflexes can be replaced by upper 
tildes, 2, and hence z, is necessarily infinite: for a row-vector 5 such that 
5?A = 0, one would deduce ZB = 0 from B = AZ with 2 finite, which is again 
impossible for left coprime matrices. Conversely, at a finite pole of 2 on the 
imaginary axis, A is singular and one has dA = 0 for some x # 0, hence 
5_?AB = 0, hence 5%~ = 0, so that det C = 0 because C is hermitian non- 
negative definite. The same result holds for a pole at infinity by the trans- 
formation of p into l/p. 

If 2 is minimum reactance of degree m, the only points of local losslessness 
are the 2m poles of (Z+z)-I. Since they are associated in pairs (pi, -pT) 
and are of even multiplicity on the imaginary axis, it is convenient to halve 
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the set and call transmission zeros, in accordance with Youla (2), the following : 
(a) the poles of (Z-i_.@-l in Rep > 0, with multiplicities equal to their 

degrees 
(b) the poles of (2 +2)-l in Rep = 0 (including infinity), with multi- 

plicities equal to half their degrees. 
If Z is not minimum reactance, we define as additional transmission zeros 
(c) the poles of 2 on Rep = 0, with multiplicities equal to their full 

degrees. With the above convention, the total number of transmission zeros 
is m in all cases. The above results are a natural extension of the one-port 
treatment [CNT, sec. 9.361. The transmission zeros of type (b) and (c) can 
both be found as poles of (1, -3%.9)-l. 

VZZ. Cascade Synthesis 

We consider the cascade synthesis [CNT, chapters 10 and 111 of a passive 
n-port for which 2 and Z+z have normal rank n. Three kinds of lossless 
sections can be extracted, corresponding to the three types of transmission 
zeros discussed in Section VI : type (a) corresponds to the Darlington process 
of section V, type (b) corresponds to the Brune process [CNT, Chap. IO] 
whereas type (c) is a Foster extraction. We will prove that, after any 
extraction of a section of degree one, the set of transmission zeros in Rep > 0 
[type (a)] on the one hand, and the set of transmission zeros on Rep = 0 

[type 0-4 ana (41 on the other, remain separately invariant, except for the 
suppression (or multiplicity reduction by one unit) of the zero used in the 
extraction process. There is, however, no separate invariance for the trans- 
mission zeros of type (b) and type (c), as already known in the one-port case 
[CNT, sec. 9.81. 

The invariance of the transmission zeros is a consequence of the following 
theorem: if N is an n-port formed by a lossless Bn-port N, terminated on a 
(dissipative) n-port N,, every transmission zero of N1 is a transmission zero 
of N. This results immediately from the fact that (29) is satisfied identically 
for N2. In the case of cascade synthesis with degree reduction by one unit, 
where deg N = m, deg N, = 1, deg N1 = m - 1, the sets of transmission zeros 
of N and N1 can only differ by one member, and this proves the invariance 
of m- 1 zeros. As for the multiplicity of the different transmission zeros, 
it will appear in the sequel [see after (47)] that no increase in degree can 
occur at any transmission zero, while the only transmission zero where a 
degree reduction actually occurs is fixed by the section extracted. 

By contrast, there is no invariance in the case where Z+z is identically 
singular, for (27) can then be satisfied at an arbitrary point. A fortiori, the 
number of Darlington extractions is not invariant in that case : as an example, 
a 2-port Darlington-section open-circuited at its output is a lossless l-port 
and admits a pure Foster realization. 

We now return to the case where Z+.# has normal rank n, assume that 
a section of degree one of type (a) has been extracted at p,, and denote by 
2, the residual impedance matrix. This matrix always exists and is such 
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that 2, +.!?, has normal rank n : in the opposite case the n-port Nt would be 
locally lossless at arbitrary points, and so would be N by an immediate 
extension of a previous theorem. It has been proved in CNT (p. 348) that 
one has 

2PR,P = P(Z,+.i?‘,)p = Z+z = 2R (36) 
where 

P = (Z-Z,) hfi/(p-p,,) - 1,. (37) 

By (37) P is clearly analytic in Rep > 0, and it has been proved in CNT that 
so is P-l (except for the point p,,). We need more, however, in this context. 
The poles of R;l in Rep > 0 are related to the poles of R-1 through the 
expression : 

where 

T =~(Z+z,)-1, 
0 

(33) 

(39) 

P and T are both non-singular in Rep > 0 except for p = p. where T is 
singular and given by: 

T(po) = - R&*(1 -UC) R,* (40) 

and P(po) is non-singular. We show that these facts are easy consequences 
of Schwarz’ Lemma (see e.g. [12, p. 2401) if one maps the p-plane conformally 
on the unit circle by the transformation: 

*=-P,. 
P+P,* 

(41) 

It is obvious that only vectors proportional to h can annihilate T or P. 
This in turn will happen at some point p # p, only if respectively: 

@LZ,)h = c-<, ‘p-p0 (42a) 

where 

The validity of (42a) implies that of (42b), 

= P+Po* 

and conversely, due to 

(42b) 

(43) 

co+<,* = po+p,,* = 2% (44) 

by (43) and the normalizing condition (3) applied to h of (25). The equalities 
(42) then contradict Schwartz lemma [12, p. 2401 requiring the strict 
inequality 

(45) 
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in Rep > 0 for the positive function 5, unless (45) is transformed into an 
equality holding for all p. In the latter case, however, (42) holds for all p. 
.Z+z is then identically singular, in contradiction with our hypothesis. At 
the point p0 (45) reduces to: 

I I d5(po) < 1 

dp 
while at pO, P becomes: 

dZ( PO) hh _ 1 
P(P,) = 7 n (47) 

P(p,,) can only be singular if the left member of (46) is equal to one. 
The degree of R;l has thus to be equal to the degree of R-l at any point 

p # pO in Rep > 0. A degree reduction of one unit was already shown to 
occur at p = pO, hence the extraction of an all-pass section leaves unchanged 
all degrees of transmission zeros except at pO. 

To continue the synthesis, one must solve for Zt relations similar to (27), 
hence 

lim(Zf+Zf)g, = 0; lim g, = h, # 0 (46) 
P-P, P+Pa 

at some p, (possibly = pO). We further show that the possible extraction 
points pa and the associated vectors h, are completely determined by the 
solution (27) for the original matrix, other than the one (pO, h) already used. 
We thus consider another solution 

lim(Z+Z)g,=O; limg,=h,#O 
P-Pi2 P+P, 

(4% 

with h, # h if p’a = pO. Using (37) and the fact that p,a # p,, or that h, # h in 
case pa = p, we have that the choice 

g, = rjg, (50) 
yields 

ha = T(P,) h, = 
h&% 

[ 

+ 2,) 

P,+P),* 
-1, h,#O 1 

and satisfies the first condition in (48). 
In the last theorem we have assumed that the first extraction (at pJ was 

of the Darlington type (Rep0 > 0). We now prove that the theorem remains 
true if the point of the first (but not of the second) extraction is of the Brune 
or Foster type. We thus take pO = j w,, but keep Rep, > 0. The theorem is 
trivial in the Foster case, since 2, +.J?, = 2 +z. The Brune case can be 
considered as the limit of the Darlington case for CL,, = 0 [CNT, sec. 11.281 
and one has R, h = 0, so that &, in (42a) reduces to jzX, h and is imaginary. 
The function r) = c- &, is a positive function of p, and also of q = p- jwO, 
and (32) gives 7 = q in contradiction with Schwarz’ lemma requiring 
1 arg 711~ 1 argq 1 in Rep > 0. The same modification applies to (42b). 
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VIII. Symmetric Factorization of a Bounded Matrix 

In the synthesis of reciprocal n-ports, where S is symmetric, the factoriza- 
tion (1) must be continued by 

s, = s;s, (52) 

so as to obtain S = SLS,S, with S, symmetric. We assume that the criterion 
of Section III has been satisfied for the first factorization so that v has been 
determined by (a), where A stands for S, and investigate under what con- 
ditions the second factorization (where u, hence S,, is now fixed) produces 
an additional degree reduction. If we rewrite (52) as &X1 = S,, the second 
condition is degS,& < deg S;, identical to (7) but with A now replaced 
by S;. 

By (S), the second condition is 

limS;v, = u; limv, = 0. (53) 

In (53), 8; is S’S: by (l), h ence SS;, for S was assumed symmetric. Since S 
has been noted A in the first condition, one ha,s 8; = AS; and the first 
relation (53) becomes 

lim AS;I v, = u. (54) 

By comparison with (8), (54) is satisfied if Sh v, = v, hence if v, = S;1 v, or 

va= l,+ ( 2c$u*u~ v 

i P--PO 
(55) 

The second condition (53), forces U’V in (49) to tend to zero at least as 9, 
with E = ia -(po. Since v is of the form EZ~ + .9x1 + . . . mentioned in Section IV, 
the condition is finally 

u’xo = 0 (56) 
and must be added to (21). 

At a multiple pole (m > l), (55) can always be satisfied, for it is sufficient 
to choose z. = 0 in (21). At a simple pole (m = l), (21) reduces to the single 
relation K,z, = u, and its combination with (56) requires 

Z$K,x, = 0 (57) 

so that the symmetric residue matrix K, of 8 at p, must be indefinite. The 
last condition was obtained by Oono-Yasuura (6) but the proof given in 
[CNT, sec. 12.271 is erroneous. 

In addition to degree reduction, one has to consider boundedness. For the 
first factorization, condition (4) makes S, bounded with S. Since S, is 
symmetric, (52) is equivalent to S; = X,X,. By a#nalogy with (l), S, will be 
bounded with S, if and only if S;(po) u = 0, hence u’ S,(po) = 0. By (I), 
this becomes u’S(po)f12(po) = 0, hence 
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By the transpose of (4) and 1’Hopital’s rule, this becomes 

and, since C # 0, 

ds ut- u=o. 
dP PO 

(58) 

IX. Discussion 

In the foregoing we have presented the theory needed to guarantee that 
degree reduction will occur when a scattering matrix is synthesized in 
cascade form by its factorization. The condition for degree reduction through 
extraction of a right-half plane factor with a pole at -pz is simply that p,, 
is a pole of G = (2 +.@-I; numerical values needed for the extraction can 
be deduced from (25) (27) while (7) (8), or equivalently (14) (15), are inter- 
mediate for justification of the extraction. 

For the actual factorization synthesis of a given matrix, one proceeds 
through the following sequence of steps. 

(1) If X is given with respect to a normalizing impedance Z,, convert to 
the impedance matrix 

2 = 2Rf(l,-X)-lRf-2, (59) 

[found from (24) : recall that 2R, = 2, +,?&I. 
(2) Determine the zeros of transmission p,, = cy,, fjq,. These are jw axis 

poles of 2 as well as Rep 3 0 poles of G = (2 +.@l [or equivalently, Rep > 0 
poles of (1,-X)(1,-&J-1(1,-~)]. A cascade section is to be extracted for 
each transmission zero. 

(3) For 01~ > 0 extractions, choose a u for (2). This occurs by first choosing 
an h, from the fact that 

0 

II 0 

hl 
is a linear combination of the columns of the Hankel matrix, (6), for G at pO. 
All h, are found in this manner and are such that there exists a g(p) satisfying 
h, = lim g(p) and lim Rg = 0 (this makes sense sincep, is a pole of G = 2R-1). 

P+PO P+Po 

Given h, one chooses the normalizing impedance 2, such that 
Z(p,) h, = 2, h,; for simplicity, and without loss of generality, one can 
choose 2, = Z(p,,). A knowledge of 2, fixes the Hermitian part R,, 

and then one forms 2cl = 01;+Ri h, according to (25) (in which h is h, except 
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for a scale factor). The normalization of (3) is obtained by choosing 

Note that S(p,,) u = 0 as required but that any u satisfying S(pO) u = 0 
is not satisfactory ; one must proceed by obtaining proper u for degree 
reduction by the steps given here. As discussed after (23), a convenient 
choice for u1 is given by u1 = KOx,_l with x,-i arbitrary vector for which 

u1 # 0. 
(4) The matrix S = R&Z -2,) (2 +i?,)-‘Rj is then factored into S = S, S,, 

when 01~ > 0, where 

(61) 

(the right hand form, which exists for some U, shows why p, is a zero of 
transmission). One then repeats on 

s, = sty = SB,. (62) 

Section 1’111 discusses a further factorization when S is symmetric, while 
if real factors are desired from originally real matrices a factorization for 
pt is next carried out. 

(5) For 01~ = 0, Brune or Foster extractions are made. 
(6) The process is continued until it terminates which occurs when all 

zeros of transmission have been extracted. The zeros of transmission remain- 
ing after a given extraction are invariant to the extraction, and as many 
sections as the degree of the original S occur. The number, and the nature, 
of the sections is fixed by the set of zeros of transmission, as with the scalar 
case. 

(7) Physical realizations of each zero of transmission section follow from 
classical n-port synthesis techniques; the sections are connected in cascade 
by realizing the coupling scattering matrix, when 01~ > 0, 

0, 1, 
c= 

[ 1 s, 0, 
(63) 

which is loaded in a realization for S,. A circuit realizing x need only use 
one reactive element and one gyrator [CNT, pp. 336, 3111, though complex 
transformers may be required before conjugate sections are combined. 
Further discussions on the circuit realization of real and symmetric sections 
are given in CNT, chapters 10 and 11. 

In summary, except for the further restrictions developed here on the 
choice of u, the theory is as developed in [(3), chapter 111 and abstracted in 

[(I3), p. 2861. 
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