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ABSTRACT

Extensions, complete in final form,
Conclude the theorem by Richards born.
Included scattering proof satisfactional,
Embraces matrices, skew and irrational.
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I. HISTORICAL INTRODUCTION

In 1947 Richards, [l, P. 779], published, concealed among other
results, the theorem which now goes by his name. As is well-known,
this was detected by Bott and Duffin, [3], and put to use in their
transformerless synthesis. As is not quite so well known, Richards
also called upon the theorem for use in a somewhat different theory;
that of resistor, transmission-line synthesis, [4, p. 219). The
functions treated by Richards were the positive-real scalars whose
singularities on the imaginary axis are poles.

Upon a study of Richards' transmission line theory in the 1961
Stanford Network Theory Seminar, an attempt was made to obtain an
extension to n-ports. By applying Bayard's generalization of Richards'
theorem, [5, p. 1701, we did succeed in generalizing the theory, but,
unfortunately, the results were not valid for the important case of
nonreciprocal networks. This resulted from Bayard's theorem being
restricted to (rational) symmetric, positive-real matrices.

Also, in 1961, Saito rediscovered Bayard's result, [6, p. 10334,
but the proof, in Japanese, is about six times as lengthy and is valid
cnly for the 2 x 2 case. BSaito successfully applied this to a 2-port
lossless line synthesis, [7]. Only a short time later, without proof,
Hazony and Nain, in s letter requiring revision, essentially restated
Bayard's result, [8l, [9], [10].

Recent correspondence with Belevitch, pertaining to generalizations
of the angle constraint for passive n-ports, [llJ, led to a
reconsideration of the previous years seminar results, which in turn
now allows Richards' theorem to be stated in its full generality. This
result, which holds for non-symmetric matrices and allows other
singularities than poles on the imaginary axis, is the object of the
remainder of the report. From this g non-reciprocal, n-port,
resistor-transmission-line synthesis has been developed, which will be

discussed in an accompanying report.
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II. THEOREM AND PROOF

Before proceeding to the theorem we introduce appropriate
notations and definitions.

We let p = 0 + jw; 2 superscript asterisk, ¥, denotes complex
conjugation; a superscript tilde, ~, denotes matrix transposition; AE*
denotes the Hermitien part of the matrix A = [aij], i.i., EAH =A+A;
Asy denotes the symmetric part of A, i.e., 2A5y~f A+ A; Ass denotes
the skew-symmetric pa;t of 4, i.e., EASS = A - A; ln denotes the
identity matrix of order n.

In the following we will always assume that k is a real, positive
number, k > 0, and that A(p) is a positive-real matrix. In this case

A(k) is real and we define

A(p) = A(p) ~ A (k) (1)

which is also positive-real; physically this operation corresponds to &

gyrator extraction. We have
k) = Asy(k) = KK (2)

where Asy(k) can be factored by standard diagonalization techniques to
obtain K, [12, p. 298]; recall that Asy(k) is positive semi-definite.
In order to give the simplest possible proof, it is most expedient to
work with normelized matrices. Since a theorem can only be given for
non-singular A, no loss of generality results by assuming that K-l
exists. We then define

A (p) = K1R(p)k ™ (3)
in which case An is again positive-real and An(k) = ln' The main
result, vhich requires PAn(P) - k1l non-singular, is the following.

THEOREM;
If A(p) is positive-real, then

-2 - SEL-62-110



A_(p) = [p1 -kA (p)1lpA (p)-k1 17" (ka)

is positive-real for any k > 0; A 1is defined by (1), (2), (3).
PROO?F:

Without loss of generality, we interpret Arn as an impedance
matrix and first form its scattering matrix, S, From (a-1) of the
eppendix,

o ln) (A1) (58)

5 ,(p) = (A

( ) [a,(p)-1 1A (p)+1 17 (5b)

Taking & clue from Bayard, [5, p. 170], we now show that Srn satisfies
the requirements given by Youla for scattering metrices, (see the
appendix).

1. Srn is analytic in Re p > 0. This results from the fact that the
singularity at p = k vanishes, as is seen by factoring p-k from the
Taylor series expansion of A (p) - 1, @bout p = k. Note that
A (p) - 1, and [4 (p)+l It are analytic in Re p > 0, since Ah(P)
is positive-real
g (P) =8 (p ), since this holds for A(p), in Re p > O.

3. ln - S (jm)S (jm) is positive semi-definite for almost all w. To

see this, form

s (p) = [An(p)-ln][An(p)+ln]-l (6)

Then

5al®) = - () 5,(p) (7)

and the desired Hermitian form becomes

1 - E:n(jm)srn(jm) =1 - E:(jm)sn(jw) (8)
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by virtue of the fact that the all-pass factor multiplying Sn in
(7) has 2 magnitude of unity for p = jw. But the right of (8) is
positive semi-definite for almost all o, since A is positive-real.

o
b, sup e-|PI ]lSrn(p)|| <® in Re p > O for some @ < 1, since this
holds for S!1 and we note that (§§E> is bounded outside a neighbor-

hood of p = k, and in & neighborhood of p = k, Sr11 is analytic.
Q.E.D.
Besides Arn’ several other forms satisfy the theorem. For
instance, the use of (a-2) shows thet

AL(p) = [pA (p)-k1 17 [pL -ka (p)] (kb)

is positive-real. By taking inverses, which are assumed to exlist, this

is also true of

A7:(p) = [pA (p)-k1_1lpL kA (p)I 7 (ke)

a-H(p) = [p1 kA ()17 (pA (p)-k1 ] (k)
By inserting (3) in (4a) we also have

A a(®) = K IpA(k) -A(p) 1 pA(p) (1)1 K (ke)
which upon denormalization yields

A (p) = KA_ (p)K = [pA(k)-KA(p)] [pA(p)-KA() ] A(k) (4r)

Ar is usually easier to work with than Arn’ since the given matrices
appear directly. Similar manipulations yield

Ay(p) = Bay (0)K = R(k)[pA(p)-kA(x)1 MpR(k)-kR(p)]  (kg)

which reduces to the form treated by Bayard in the rational, symmetric
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cese. Other forms result by similar arguments on (4c), (44) and upon
inverting (4f), etc.

Two examples illustrate the theorem.
EXAMPLE 1:

Consider the positive-real scalar, A(p) = v/p. Using (if)

D
p/p-kvk

A (p) = vk
By simple manipulations, this is seen to be positive-real, since
A;l(p) _ p-l/z . k-lpl/a . k-1/2
Note that A(p) is not rationel or meromorphic, but has a branch point
at p = 0. Further, p-k doesn't "cancel" in Ar(p).

EXAMPLE 2:
Let k = 3 and assume

A(p) = |4 8@,%)
k

which is positive-real, and rationsl. Then, using (1),

- Y _ 3p-5 Y _
A (k) =| 0 2|, X(p) =\t '155'1_ , Mk) =14 2
-2 0 2 L 2 4

and from (4f)
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A (p)

{E(P-B) ° <P+l }{E(P 2_9) ¢ <P"'l } ;

1 -1 2 4

]
=
1
=
+
O
1
)

which is clearly positive-resl. Note that p-3 cancels, as expected, as
well as p+3, even though A(3) £ -A(-3).
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III. PROPERTIES

In the important rational case several useful properties result.
COROLLARY 1:

If A(p) is rational, then the scelar term p-k cancels between the

two factors of Arn(p)'
PROOF':

By the rationality, p-k clearly factors every term of [pln-kﬂn(p)]
and [pAn(p)-kan, since these matrices vanish at p=k. @Q.E.D.
COROLLARY 2:

If A(p) is rational with A(k) = -A(-k), then the scalar term p+k

cancels between the two factors of Arn(p).
PROOF:

Both [pln~kAn(p)] and [pAn(p)-kln] vanish at p = -k if
A(k) = -A(-k). The result follows by rationality. Q.E.D.

As seen by Example 1, p-k need not completely cancel, if A isn't
rational. As seen by Example 2, p+k can cancel even when A(k) # -E(-k),
in contrast to the result in the scalar case, [1, p. 779]. By observ-
ing (7) it is clear that no other cancellations than those of p-k and
p+k can occur in Arn' When A is rationsl, we cen use McMillan's degree,
85(A), to tell how effective the cancellation is, [13, p. 580]. By
McMillan's properties, we know that H(Arn) = 5(Srn), and from (7), (3)
and (1), ﬁ(Srn) < 6(Sn) = B(An) = 5(A), since p-k cancels into the
numerators of Sn' Here equality holds if p+k doesn't cancel with any
terms of Sn' In case the conditions of Corollary 2 hold, p+k cancels
with every term of 5 and we obtain B(Srn) = S(Sn)-n in this case,

since no other cancellation can oceur. Thus
8(a_ ) < 8(A) (9a)
8(A. ) = 8(A)-n if A(k) = -A(-k) (9b)
These relations give a rigorous way of showing that & synthesis
method will terminate; they hold for all other matrices in (4). We

point out that if A(p) is @ lossless impedance matrix, that is
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Alp) = -K(-p), it must at least have degree n if A(p) is non-singular,
which is consistent with (9b).

If we interpret A(p) as an impedance matrix, we can give a physical
realization of A(p) in terms of Arn(p), even in the irrational case.
Solving (4a) we have

A (p)

[kln+pArn(p)]-l[kArn(p)+Pln] (10a)

(A2 (m)(p/k1 170 + [(x/p)L 4a_(p)] 7 (100)

]

{la (e)s(o/e 170 + [(e/p0 +aZ2(2)1713 Y (20c)

wvhere we have assumed Arn non-singular (if it is singular, it can be
transformed to the direct sum of zeros and a non-singular matrix and
similar calculations made). Using (1), (3) and (10) the realization of
Flgure 1 results.

i Co (kio)1,
CYRATORS ; Arn CAPACITORS
- Ay —m
A —— A ——3= | TRAHSFORMERS al-———— — == b
(pfk)1, A-I(p)
° INDUCTORS rn

FIG. 1. STRUCTURE FOR IMPEDANCE A, USING RICHARDS' THEOREM. ALL BLOCKS
ARE n-PORTS.
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In Figure 1 points a and b are open for (10b} and closed for {10c).
A network can be inserted between a and b, as with one-ports, such
that a realization using fewer inductors and capacitors can be obtained,

[14]).

By substituting (4a) for A in (10b) and simplifying terms,
(10a) can be rewritten as

kA (p)-pl k1 _-pA (p)
By(p) = k| 52 |+ p |~ — (10a)
k -p k™ -p

with each term on the right individuelly positive-real. This is
essentially the form quoted by Hazony and Nain in the symmetric,
rational case, [8].

If A is symmetric, then Arn is symmetric, as is seen by writing
(ka) as

A (p) = plpA (p)-k1 170 - kip1 -ka~t(p)1 7t (11)

in which all terms on the right are symmetric. By observing all the
other equations (4), it is clear that they are also symmetric. In the
symmetric case the Ass(k) term in Figure 1 is replaced by short

circuits. Note, however, that in general, Arn will not be symmetric as
is shown by Example 2.
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Iv. CONCLUSIONS

The theorem of section II extends that of Richards' to cover the
most general kinds of positive-real functions and matrices. The
result is not limited to functions whose singularities on the jw axis
are poles, as is Richards', or to symmetric metrices, as is Bayard's.

In case A 1s raticnal, then cancellations of p-k and p+k, and
only of these, occur; but cancellation of p+k can occur in other
situations than listed in Corollary 2, if A is not a scalar, as shown
by Example 2. Again in the rationasl case, the degree can't increase,
and, when 1t decreases, Figure 1 can be used for an impedance synthesis.
since A(p) = -A(-p) if A is the impedance matrix of a lossless network,
this will always yield a lossless synthesis. However, this method of
synthesis (lossless or not) is somewhat impractical since an excesslve
number of elements is required. This is dreamatically illustrated in
the non-lossless case by carrying ocut the synthesis of Figure 1 for
Exemple 2; three gyrators, two inductors, two capacitors and two
resistors would be needed even though E(A) = 1. Since the input
impedance matrix of lossless transmission lines in terms of the load
takes the form of (10a), this does yield a practical distributed

parameter cascade synthesis, as discussed in a companion report.
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APPENDIX: POSITIVE-REAL MATRICES

Here positive-real matrices are defined, and Youla's equivalent in
terms of the scattering matrix, used in the proof of section II, is
stated.

An n x n matrix A(p) is called positive-real ir, [15, p. 122],

1) A(p) is analytic in Re p > O

2) A'(p) = A(p") in Re p>0

3) AH(p) is positive semi-definite in Re p > O

When they exist, the immittance matrices of a passive network must
necessarily be positive-real, [15, p. 122]. However, if an immittance
matrix is positive-real, it need not correspond to a physical network,
as examples show, unless it is rational, in which case synthesis
methods apply, [16, pp. 113-169].

If A is an impedance matrix, A = Z, then the scattering matrix
can be defined by

42]
1l

(a-1 )(a+1 )7 (a-1)

(A+1)7H(a-1 ) (a-2)

In terms of 8, we know that A is positive-resl if and only if,
[15, pp. 116, 1231,
1) S(p) is analytic in Re p > O

2) §(p) =5(p) inRe p >0
3) 1 - E*(jm)s(jm) is positive semi-definite for almost all (real) w.
L) sup e-lplalls(p)|| <w® in Re p > O for some ¢ < 1 where
n n
|]s]| =2L }: lsijl and 5{ jw) = Lim, S( o+ jw).
i=1 j=1 e

Note that for rational S, condition 3 shows that S is analytic on
Re p = 0, and condition 4 is automatically satisfied.
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