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A LOCAL TIME-VARIAELE SywTEsis‘
R. ¥. Nowcomh#

"I've seen & dragon in the sky
(and I's amumed becaupe he's made
of clouds, and I've played with him)" [1]

1. Istroduction

Bocause of its many nuances, the theory of time-variable synthesis poses
interesting challenges, Yor exasple, a conceptually simple scattering matrix
tecknique [2]) results in noncausal structures, block disgram wethods [3, p. 30]
require unnecessarily many sctive components where passive ones mxy suffice,
vhile tranaform techniques [4, p. 273] are restricted to vory limited classes
of circuits. Thus, even though some state-variable ideas are also proving pro-
miping [8, p. 124], we look bhore st an operational method which for local time
usage, avoids the major drawbacks of alternative techniques, Although this
paper raises some interesting calculational problems it firmly lays the founda-
tions for an operational calculus while mlso outlining sufficiency of previous
necedwary conditions for synthesis [6, p, 13],

Our idea is to introduce & calculus for time-variable differential polyno-
uisl operators, P(p,t) with p = d/dt. This calenlus rests upon abstract alge-
braic concepts, such as skew-field differential ring emheddings and Galois solution
field extsnsions, allowing it to Asndle coefficient singularities which occcur in
physicel networks, for example when gyrstors vanish [6, p. 43]. This calculus
is ther applied to the synthosis of an neport through s given scattering mstrix
oxpressed in terms of differentisl opearators, 3(p,t). Indesd the mcheme ia to
form another, essentially lossless, scattering matrix ;(p_,t) t

‘ I= |2 &i &)
I  In

z is & bordered version of 3, found by factoring two resistivity matrices, for
which the adjoint is the inverse. When & 18 also paseive, called quasilosslass,
it can be synthesised by lossless intercommections (for exzmple, time-variable
gyrators and fixed capacitors) using availahle techniques [7, p. 251]., Termina-
tion of the final ports for 5‘ in unit resistors yields 8 at the input, As
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yot, the factorizations used yleld only pasaive components for local time, though
with proper gyrator time variations global extensions are possible as will be dis-
cuaped,

- +
The primary algebraic source relied upon in the development is Rédel [B] with
diffsrential algebra concepts avatlable in [9][10], we assume some familiarity with

“What will occur, I ask myself,

if that ig a trye dragon

(thet depth over thers in the dark
1s his eye which skines)," [1]

ITI. Differentinl Folynominls - Field Extensions

We start with available theories, investigating Properties and extensions
to quotient akew-ﬂalds, of polynomials fin the derivative operator p.

Lat B[ ] denote the degree and consider a polynomial of degree k, B[P] = k,
P{p,t} = n-k(t)pk+... al(t)p + ao(t) a, £0 (2a)

whers the a,(t) are sasumed to lie in a differentir]l field F, [9, p. 10]. Buch

A4 polynomial will be called a differential Polynomial (over F)} since algebraically
P is assumed to operate through

pa(t) = a{t)p + a' {t) ; acp s a'eP {2b)

with the derivative a' uniquely determined by a. Hera by a differential fleld
is meant & fisld for which a mapping (derivative) into itself is defined satisfying
(ab)' = a'h + aht A (b'l)' = -b'/bz; for example P way be rational functions in
I:‘t. with real coefficients or functions which are the ratio of funetiona holomorphic
“in a regicon. The constants are those elements a for which &' = 0, Any field
cen be mede a differsntia] field by taking a' = o for all a in the :Hald,. but
this 1s trivial; we will generally interpret the derivative as time differentiation,

Using plpd _ pltd o4 readily define the product PPy of two differential
polynomialg P; and Py from which we note, by observing the lead coefficient on
using (2b), that Ple = 0 impliea l?l =0 or Pz = 0. Consequently, the set fiad
of differential Polynomials over p forms a Roncommutative ring with no divigsors
of zero, Although thig Property ia not sufficient for the formation of a Quotient
okow-field [12] we do have that for any nonzero Py, Ppe® there exis, nonzero
B, Py, 31, ?2 €® guch that Flpl = '152!'2, P].?l = stz, a8 18 seen by equating co-
efficients, Because these equalities coupled with the absence of Zero divisors are
Necessary and sufficient conditions for the creation of a right apd a left inverse
for every nonzero element of & » W8 can extend ® to a left quotient ring 3 and
4 right quottent ring fi13, p. 5)[14, p. 487][15, p, 137] and theae quotient rings
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are identical [18, p, 756); A is often called a skew-field or division algebra.
Indeed the method of forming 2. is constructive and calculations ere carried out
by cross multiplying denominators,

The reason for all this is that we can now work rigorously with quotients of
two differential polynomials; for example, (p+a)'1(p+b} = (p+b+ [a'-b']/[a-b]) X
(p+a+ [a'-b']/[a~-b])“)" for a, bEF.

Of possible future intersst for matrix decoupositions is the fact that ® 15
8 Euclidean ring [8, p. 325]; thet 1s, a Euclidesn algorithm exists [14, p. 483]
based upon either left or right hand division, 8pecifically, given P. 12 Pzed’ with
B[P iz E[p2]70 there exist differential polynomials '15 and P;, baving 6[51] =
a[plj - B[pz] and a[p ] = ﬁ[pz] = 1 such that

P1 = Ple + P3 @)

from which we deduce, for some k, the sequence : l='2 = .1;2113 + Pd"“’ Pk-z’
Pk_sz_l 3 Pk’ pk-l = Pk lpk The unique differentisl polynomial Pk

is then the greatest common right divisor of Py and Py. Using similar operations,
elementary matrices 2By 8. (baving entries, and inverses with entries, in (P) can

be found such that for any (square) matrix '.:\_ with entries in @ a Saith form holds
[15, p. 139]

P(P,t) Alp,t) Q(P,t) = diag ['l (p,t),...,n (p,t}, °] (1)
In (4) a; 1is a left and right factor of &y, and 5[&1]45[113] for 1<j; the
rank r 1is independent of P and Q The result extends easily to nonsquare A

while B[A] 151 a[al] is usefully defined as the degree of Ay

O0f more immediate interest from the Euclidean algorithm is the consesquence
that as a Buclidean ring, ¢ 1s a principal ideal ring with irreducible factor de-
composition (8, P, 325] with, for what it is worth, all principal ideals generated
by the elementa of the normalizer of # (the normalizer is the set of polynonials
P for which P®=@P; ideals are someswhat like divisors or factors).

The irreducible factor decomposition shows the pogsibility of factoring diff-
erential polynomials, though these factors are not in genmeral unique unless ¢ is
commutative (the time-invariant case), Unfortunately the irreducible factor theorem
1s not constructive, soc our next real problem is to determine the factors and their
nature. Such requires an algsbralc trestment of differential equations.

Toward this latter we note that the differential polynomials can operate on
the differential field F, mapping P into itnelf; that is, we can introduca
Another multiplication, denoted e , such that P(p,t) » a(t) cF for Pcf, mecP, This

pairing, F|® , forms an operator structure [8, p. 223], and within the operator

structure P(p,t) = u(t) = 0 C))

represents a differentisl equation.
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If the base field F has characteristic zero [17, p. 362] (meaning infinite-
1y many distinct multiples of unity, as for the reals) and has an algebraically
closed [17, p. 382] field vf constents (meaning every polynomial with constant
cosfficients tn F hag a root in F) then there existg an extension field Y,

called a Picard-Vessiot extension [9, p, 21] such that;

8) F and ¥ have the 8ame field of constantg and
b) &[P] 1ineariy independent (over constants) solutions u
in ¥,

1 of (5) lie

lie in the tield; by bairing complex solutions T can be chosen real with P ir
deaired, Unfortunately no constructive method for obtalning a Picard-Vessiot ox-
tonsion sesms available; gtill the result is one of extreme power, We now assume F=f,

Now let u(t) satisfy Peu = 0, then by direct evaluation u also satigfies
{(p~u'/uleu = 0 apg u'/uel gince § s @ differential field, By the irreducible
factor decomposition we ses that (p-u'/u) ts a right factor of P and that, in
fact, when P 1g formed over ¥, all irreducible nonunit factors are of degres one,
Thus, fon Pe P of degree k we get

P(p,t) = lk(t)pk+...+ 8, (t)p + a_(t) ; ae ¥ (6r)

=a (t)[p - x(t)]...[p - o, (1)) ; aey (6b)

For convenience we will eall the 01 00ts of P, Of numerical interest is the
fact thet if u satigfies [P -~ aJeu = 0 then

t
uf{t) = u(to) exp [- ft a{1)d7) ")

of F. But, indeed, such integrals need not exist in the clagsical sense; they
Are obtained by Galcig type extensions {2, p. 23] of F. The integrals and axpo-
nentinls of integralg may then be in § but need not complete ¥, as shown by
Pzp =-t[s, p, 44], though we believe Volterra compositiong of auch will do the
Job [, p, 7].

At this point it 18 appropriate to introduce the differential polynomial ’ Pa,
Adjoint to P of (6a) I
—_——

p“(p,t) = (-—ljkpkak(t) S pzaztt) = pa, (t) + a (t) (8)

For a self-adjoint Pef, extending the constructive mothod of Frobenius [18, p, 193],
We can obtain a factorization p = P = PlaPl, Pye® (with base field extended to

¥). The actual form, which indicates the construction, obtained by Frobenits ig

P=p2 [clt-p)cz(-p)...c‘(-p)] co[pcip...pczpclj, 27 =k (98)
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where cl = l/ul with w, aa before, Thus P = li'lali'1 has

1
Pl = o\fc—o'pcj...czpcl a -{q [p - G‘]...[p + c'llcl] . (9b)

Pje T requires Vco' A Vak' € ¥ which will be true if F is algebraically closed
or, more important for passive synthesis, if P 15 a nonnegative differential
operator, this concept being defined as follows for o more general matrix case,

First we note that the adjoint 8'_' of a matrix Q with entries in the ex-
tension skew-field X of ® is formed by transposing, denoted by a superscript
tilde ~ , ond taking the adjoint of its diffarential polynomials as defined by (8).
Then & self-adjoint n xn watrix 3. is celled nonnegative, written Q®o, 1if
for all n-vectors _r.{t) having all entries infinitely differentiable and of compact
aupport (the L. Schwartz distributional testing function space D [19, p. 21]) B
the following integral exists and is nonnegative

J E® [96,0-x0] a2 0 0)

At (10) we have really introduced an operator structure on o, gince this is math-
ematiczlly little explored we begin to tread on thin ice’ Note though that

--|:v2 -1 = (1/8in t) (-r.u)[ul.n2 t]p(l/8in t) is not nonnegetive while -p2+ )
e_t(-p)eatpa“t ia; too x(t)/sin t does not have integrable entries for all

x,€ 0. Actuslly when P = PP¢ # 1is written as [18, p, 191]

P= 0 et + 0¥y ok e B, au
then PzO 1if and only if By(t)®0 forall 1 and t [20].

e

"I have become sombre, teken by doubt
but that it is a game:

We are fearful from youth, "
it 15 time to commence seriousnesa, [1]

I11. Gauss Factorization

With the above preliminaries we can obtain a useful, spectral type, Gausa
facterization upon which the synthesis is based. By way of further notation we
uge 1, for the m x o identity matrix,

Consider as given ¢ melf-adjoint, nonnegative matrix Q (p,t) of differen-
tial polynomials, On pertitioning 3_:3? with qn a8 sealar aatrix, we can
write

Q%) = 4, G4 (12a})
a
S12 A2
-1
= |q Q q 0 q . & =1
11 11 - n 42| ; g,=9,,-9339; 8, Q2
a
A1z S 25 L5 ~n-1
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where 931 # 0 is agsumed, if necossary by the use of a permutation of rows and

colums., Now gqp; = 93} 50 =and, hence by (92), gy = qlqla. Further, by the

quotient ring conditions, we can find a differential polynomial Ql and a differ-
~1 -1

polynomial matrix Oy2 such that qn 312 =312Ql . Thus, from (12b) with a

superscript -a denoting the adjoint's inverse,

i - 154 12
82 =% [89,% -8, %] % 20 i
Continuing the iteration, after interchanging factors with Qil and absorbing any

permutations in the outer matrices finally gives a Gauss factorization

- -1
R=lL, LY L w-g'g (3

P 15 the rank of Q, and ¥ and L are polynomial with L, diagonal,

where lp,n is the p x 0 zero matrix with its first P columns replaced by Jp‘

We comment that bacause of the honuniqueness of irreducible factors in *,
various properties for XL are possible; briefly we investigate 2 "Hurwitz" pro-
perty. First we note that an ordering can be introduced in 3 [8, pp. 368-582]
from which it is possible to isolate positive and negative quantities, Next we
illustrate how entries in L can have their roots postitive; for if not we make
an interchange with entries in 5:. This interchange is Juatified by conaidering

(» =2)(p +b) = (p +c)(p -d) (14a)
with 211 roots positive in §. Multiplying and equating coefficlents, the equality
of (l4a) gives

4 + (b - a)d +d® < b+ ab, cz=d+ (b-a) {14b)
Using the substitution d = ¥'/y [21, p. 295}, the left of (14b) raduces to

¥+ (b - a) ¥ = (b +ab) y =0 {l4c)

for which, via the theory sasociated with (5), we know a solution exiats, Given
then a,b we find ¢,d which "numerically” will be positive through o proper ini-
tisl condition choice {here our ice is actually thicker, though still thin'!)

e

But that's not possible, that's not posgaible!

said the dragon taking the word to the top of the mountain,
'For all pass, and J too, you'll mee

I'm defeated; there is no hope.*

(that's what the dragon seid, and hig eyes cried tears of rain
and his crest romantically fumed),™ I1}

IV. S8ynthesis

With such detzils now in hand synthesis ideas become rather straightforward
to develop, at least in theory,

We assume as given a genaral (differential equation) description
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2,057 (t) = bep,t)xi(t) (15b)

1 1
with a,,, buF-‘P, vy €D, ¥

which an n x n scattering matrix

and lr ara incident and reflected n-vectora from

-

a(p,t) =g_"1(p,t) b(p,t) (15b)

is defined., The base field F and scattering matrix A are taken such that B
satisfies the necessary pasgivity constraints (8, p. 13]. 1In essence these are
that 8 umapg square-integrable ‘_!_1 causally into square-integrable l’ and that

the following resistivity matrix R(p,t) 13 nonnegative;

&
‘Ealn-‘g _9_2 0 (16a)
Observation on the equality of eigenvmlues of .Ef with 3_‘1 @hows that also
a
= = 2
By=3,-3g20 (16b)

Returming to (1)} the primary {quasilossless) condition for applying availa-
ble syntheais techniques using only losslessa components is that {7, p. 258]

a a
ZI=LL i an

where r, the number of resistors in which to terminate, is the number of rows
and columns by which the given 8 is augmented. Multiplying and recording, the
crucial entries of (18) are

R=ZnIns Byy=Liaks s LoDy = -Lgot as)

Our philosophy is to factor the two left reglstivity matrices for 2:21 and
r,lz, hence the reascn for the Gauss factorization, and then solve for Yoq from
— -f =
the right term on introduction of a pseudo-inverse _5:2? for .’:'1;' First we

roduce all quantities to differential polynomials through
-1 -1

B
—

We have, from (12) with p = rank R = rank 3“ =2 r:

R=5"le" g1 -E Kl Bo= 6 (68,7 - '152 516" (o)
aL v A s T =l % gt (s
or finally
PR 5’ A S Sel Lo =l s, ase)
Inck LM B Infm{® = as

-1 -1 - a
LY, M EMT L ae1)

The Y formed from these last terms vie the bordering of 5 in (1) automatically
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satisfies the quasilossless condition of (17). Likewise any ratio of differential
operetors can be represented by & causal map (as well as a noncaussl one, if ever
desired). The furthsr required square-integrable map property appears obtainable
by the choice of I and Lg having positive roots, However, thins poaitivity is
in §¥; numerically it only holds locally and hence different interchanges between
L and J..: are nesded for different local tiames.

Finally z is synthesized as a quasilossless {n+p) -port [7, p. 251], uming
unit capacitors and time-variable-gyrators (s&ll grounded, if desired) and teriinated
in rs=p unit resistora {(also grounded, if desired) at the fina} ports to yield
s at the input n ports. Since the structure remains fixed, and p 1is constunt,
one csn pimply place all tiwme-variation in gyrators which can switch from one local
solution to another.

"*But there is hope, there is’
have szid the thousands of blades of grass in the garden
the mountain snd lake, and the band of swallows in the wind." [1]

IV, Discussion

In this paper we have developed a calculus for differential operatora and
applied it toward the synthesis of finite time-variahle n-ports through the scat-
tering matrix. Of these, the calculus, which is rather rigorously complete, is
probably mors significant since it applies to many situations in general systems
theory. In essence the calculus generalizes and rigorizes that discussed by Baeks
[22].

The synthegis presented cun best be considered as an existence theorem since
it rests upon Picard-Vessiot solutions for the factorisations, and, as yet, no
construction method for theese sclutions is available. ' The synthesis is, however,
practical in that only & finite number of capacitors, and a minimum number of
resistors occur in conjunction with time-varisble gyrators, all of which can be
grounded for integrated constructions [23].

One could ask, though, why such abstractness is noeded, Firat, the use of
differential polynomiala seems the most natural and physical way to proceed., Becond,
the algebraic method sppears as the most rigorous way of obtaining meaningful re-
sults. Third, the theory i1s beautiful, combining algebra with analysis with syn-
thesis. Pourih, the ideas were inspired by an Hungarian source snd o masterful
work [8].

As with new approaches, the development leaves considerable to continue upon -
there is material to investigate with regard to choices of L at (12), and methods
of finding roots originally need further treatmeat. Extensions to distributed and
nonlinear domains appear possible within the area of differential algebra [10],
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Much research between function spaces, as D, =and algebraic ones, ams ¥, seems

neaded,

"If you see a dragon, cowpanion, scul who lives,
let us atruggle to the last shred of owr foar,
for I would tell it thus: So much am I

aven ready to have fear, as it is fear

which givea birth to hope,

according to the law." [1]

[1}

(2]
(3]
(4]
[5]

(6]

(7]

(8]
9]

[10]
(11}
{13]

[13]
[14]

ris)
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VI. Appendix {S8ynthesin Example)

Consider a 1 3z
cion 5Pt = [p + g~ g/p 1I7Np t56 -8'/8] , ger
R=1-08"8c[-p+g?, g/} -;f-:td][n + g g' /gt
2 - =
Ry =1-sa"cfpeg? . gy i %:—:‘][-P + 8 - g rg]?
chooae 42 2 -1
En=-g®lPr+& +g/] = [pag- ',/‘]-1[_34‘2]
2_ L, -1 42 -
Lp=ip +8 - g'/q) [ 5&°1 witn 1:1(2')= [-p + 6% - g /5l %szl
a_(-a) 2 =
Lgp = ~Ey;8 51(2“ ={p+e - g/mp- %Rz - €'/g]
Thus
32 g
- 1 P+ - E 25
T ol RS ¥
3 42 32 g
- 3F P-z8 - %"

Pagnive synthesis ig immediate from
-1 5 N5 5
Z= Qz -5 (_12 +0 = [ =(p-g") 2| = _:p__:

end 18 seen to use one time variable gyrator of gyration conductance g(t)/45'
loaded in a unit capacitor,this in series witnh & fixed gyrator to be loaded in
a unit resistor. Note the singulay behavior whe. B(t) =t .

‘T=19/10




