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THE TIME-VARIABLE CALCULUS OF V, DOLEZAL

by R. W, Newcomb+

Abstract: By simplifying the ideas of Dolezal a promising method for the
analysis of time-variable systems is presented, The method consists in
converting describing equations for linear systems to integral (distri-
butional kernel) form, and then inverting the result by the use of

Volterra series,

I. Introduction

One of the problems in dealing with time-variable systems concerns
the solution of terminal describing equations, Along this line V.
Dolezal has presented a method of solving linear integro-differential
equations which should prove of some interest for both analysis and
synthesis [1] [2] [3, pp, 115-187]. The method can be congsidered some-
what in the nature of an operational calculus for time-variable systems,
though perhaps not the most appealing in this operational sense, and
can be considered to rest upon the theory of distributions, The philos-
ophy gives a theoretically appealing method but, without the use of a
digital computer for which the method does seem imminently suitable, the
computations are somewhat difficult since solutions are based upon
infinite series solutions of integral equations. The class of equations
which can be treated is much more general than the set of ordinary dif-
ferential equations with variable coefficients since integral operators
can be considered., Hence nondifferential systems and especially time-
variable systems with delay can be handled,
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In the following we summarize, simplify, and extend to the widest
class of distributions, the theory of Dolezal, The presentation relies
heavily on the theory of distributions [4] [5] and in particular the
theory of distributional kernels [6], with which we assume the reader is

somewhat familiar,

II, Distributional Preliminaries (Definitions and Notation)

The theory rests upon the vector valued theory of distributions in
two variables, For this we proceed by reviewing the theory of L. Schwartz,
[4] [5]. sSince we will sometimes need results for both one and two
variables, we actually will work with m variables and specialize m
to one or two as needed,

Let Rm be the real m-dimensional vector space whose points x are
defined by the m (real) coordinate variables X5 Xy wens X A
complex valued n-vector function evaluated at the point X will be de-~
noted by \:E(E)' By the support of £ 1s meant the closure of the set
of points x for which 5(3) P Qﬁ thus in one dimension the (1-vector)

unit step function

u(xl) = (I-1)

has support xi > 0, Key to the theory of Schwartz is the set of (n-vector)

testing functions,*

D. EL is, by definition, a testing function, Eegb

if éﬂ is infinitely (continuously) differentiable (in all variables) and

of compact support. Although these are not worked with much in calculations,
it is of interest to know that testing functions exist; in the scalar
(1-vector) case such are, [7, p. 106] [8, p. 2],

*
A wiggly underscore m. (for bold face) will mean n-vector or matrix
quantities and will generally be omitted when only scalars, i.e,,
l-vectors, are being explicitely referred to.
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olx) = exp[:%]_expp-_Jl-E]u(xl).u(1-x1) (11-2a)

xl (l-xl)

2 2
o(x, ,x.) = exp[-( 2 YTu(l-r); r =/x +x (1I-2h)
1’72 1-r2 172
Now given any (locally summable) function ,{E the integral (a tilde
denotes transpose)

ff f i(:.c)a(&)d:_c = <IpHp 9> (11-3)
. -—iX)

will always exist for every Pefp; here dx = dxldxz...dxm. <Ef’ P> is
L] L

called the scalar product of the functional -\T.f (defined by “:I.E‘) with
the testing function ¢. We note that wg, through (1I-3), defines the

™

linear continuous functional 7T ; that is given £, T =T, has the
v f “ w el

following properties for all qaieg and any complex constant scalar o
A

D <D gi> = <T@ > <L gy

LA

3) If all .CBJ have their support in a fixed compact
subset of Rm, and, if they, as well as each of their
derivatives, converge uniformly to zero, then the

complex numbers < E, Q 3 > converge to zero,
o,

Any ;I‘“ satisfying these three conditions, that is, any continuous linear
functional, over D 1is called a (n-vector) distribution. If (as we do)
we identify Ef with £, writing Ef = f, we see that every (locally
summable) function is a digtribution; however, there are distributions

which are not functions; such is the (1-vector) impulse "function,"”
B(x), defined by

<%, 0> = o (11-4)

We point out that not all normal "functions" are distributions, they must
be locally summable; thus exp[l/xl] is not a distribution, The space of
distributions is the "topological dual" of p eand is denoted by o',

A ~m
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That 1s Tep' if and only if I is a linear continuous functional
defined over the set of testing functions ¢,

The use of distributions lies in the f:;t that they can be differen-
tiated an infinite number of times with the resultant derivative still a
distribution., 1In order that distributional properties agree with functional
ones, (II-3) is used to define all properties of distributions. Thus, re-
placing £ by agfaxi and integrating by parts, we are led to the

distributional derivative of z(x) with respect to any component xi

of x

< ag;/axi, P> = < -T, atp/axi > (11-5)

Note that this shows why we wish 2 infinitely differentiable and why
all derivative sequences of uniformly convergent 0] should also be

uniformly convergent, As an example we have

au(xl)

g}-{— = ‘Ll' = 6 (II-G)
1

In the m-variable l-vector case it is convenient to work with the tensor
product, Thus for two single variable distributions Tl(xl) and Tz(xz)
the tensor product, T(xl,xz) =T, ()'rz, is defined by, [5, p. 109],

< Ty (x)) ®T2(x2)’ Px),%,) > =< I (x), < Ty(x,), P(x;,%,) > > (1I-7a)

This is uniquely determined by using "degenerate" testing functions, that
is ones of the form @(xl,xz) = ml(xl)-¢2(x2), [5, p. 109],

< T1®T2, P1oPp> =< Ty, @y > - < Tys Py > (II-7b)
For example we can define a two variable unit step function by
u® = ulx) @ulx,) (1I-8a)

Then by (II-6)
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Ju (x)
.&l(i = B0x) @ulxy) (II-8b)

3% (x)

X_0x

%, * B(x)) (®)8(x,) = &(x) (11-8¢)

A matter of interest is the support of a distribution., For this a
distribution ‘2‘. is said to be zero in a set Q C R" if <5 £> =0
whenever the testing function @ has its support (i.e,, is nonzero) in
§i, The support of E‘ is then‘zhe closure of the set of points in Rm
for which E ;éa; u(x) in (II-8a) has support x >0, X, > 0; 5%
in (II-8¢) has support X =0,

A special notion of supplementary interest here is the convolution,
S#T. For l-vectors this can be defined through the tensor product by
[5, p. 11]

< S¥P(X), 9(X) > = < S(:_c)@T(x), Plx+y) > (II-9a)
= < 8(x), < (Y, p(x+y) > > (II-9b)

Thus, for Sep',
S¥% = 8 (11-9¢)

In working with one and two variable distributions we will normally
let

in the following. Further to distinguish the one and two variable spaces

we will sometimes insert subscripts, and for example, write Dt’ Dt -
L) vmb oy

131':, gt T Some other spaces will be of interest, The important set of

™ E)

nxn matrices, T(t,T), whose entries are distributions which have their

support in the half-plate t> T will be denoted by D't>'r' The set
L

of infinitely differentiable functions (not necessarily of compact
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support) will be denoted by E' (with appropriate subscripts, as used on
EP’ for example exp[t]e&t. The set of distributions of compact support
is denoted by é:, for instance S(t)eéé, u(t)ﬁ&%. When the dimensions
are the same nCE, QCQ'CQ‘. Of considerable interest is the set of

nxn matrices G(t,T) of functions of the form
P AN
G(t,7) = g‘(t,'r)u(t-'r); g(t,1)eE (II-10)

These will be denoted by -§t>'r; we have then ﬁbTC&>T. Also, the set
of n-vector or nxn matrix distributions in one variable with support
t> e> -w (bounded on the left), c = arbitrary constant, will be
denoted by .Q-;-; thus, in the scalar case u(t)eﬂ_;_ and 5(1:)(-:2).:r but
exp[t]£ D).

By a distributional kernel will be meant any nxn matrix of distribu-
tion; T(t,'r), in two variables; that is I is a distributional kernel

if EED;; . Then given a distributional kernel, it defines a linear
L]

continuous mapping of (n-vectors in) DT into (n-vectors in) __é,
{6, p. 221]. We can denote this mapping by the notation® (the operation
denoted is simply called composition)

o

fz(t,T)w(T)dT (11-11)

-0

fl

[Zy] = [0 -y(D]

which is somewhat a (nonscalar) scalar product over the variable T,
However, note the difference between [.T..'E{.] and the scalar product

< T, 9>; [T-¢y] 1is an n-vector distribution of one variable while

<71, §> is : complex scalar number, In fact for, [6, p. 221], q)egt’T,

cplt-: Dt’ cpze D-r’ and

o(t,7) = 9, ()9, (1) (I1-122)

*
Because we will have frequent use for differentiation of [T 1;:], we use

this bracket notation of Dolezal for composition, However [T ¢r] has
the identical meaning of the notation T. .,‘JL of Schwarz, and used commonly
in previous works [9],
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we have
<T, 9> = < [T-(pz], Q, > (I1-12b)

where the scalar product on the left is in two variables and that on the

right is in one, As an example, let, with 9, as in (II-122),

T(t,T) = u(t)&X)5(1) (II-132)

(T-9,] = u(t)gp,(0) (11-13b)

<[T0,), 91> = 0,00 [ (Ddt = < T(5,0), 9 ()9,(1) >(11-130)
0

We recall that a knowledge of the scalar product < T(t,T), ¢1(t)¢2(T) >
for all Pys Py in 9 is sufficient to determine < T(t,T), o(t,n>
for all @€ [4, p. 108] and hence sufficient to define T.
|

For many Eeg&)T it is possible to form [Eﬂg] for other JL than

those in [%, this is easily seen to be possible for any wezﬁ if
Lol wa e

IEE%,T. A particular case of interest is when -EE§¢>T’ then {Exg] can
be formed for any wegi.

A supplementary result, needed for calculations, is the procedure
for testing the scalar &(t-1) as a distribution in two variables, As

preliminary steps we have

ot
< u(t-1), P(t,1) > = ./- jﬂ¢(t,1)d1dt (I1-14a)
~m -
[+ o
= f f(p(t,'r)cltd'r (11-14b)
Ceo
o o
< uft-1), - %;ﬁ> - f f_ Q"ﬁ%dm (I1-14c)
-0 T
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=]
= f (1, T)dT (1I-14d)

Thus
< B(t-1), @(t, 1) > = < u(t-1), @é—,gﬂ> (II-14e)
co t ]
=f f %%-Qd-rdt =fq>(t,1:)dt (11-14f)
-Cn -0 =00
= <1, p(t,t) > (II-14g)

Also, of interest is the definition of the product of €& by
Te 23_" through

<ar, 9> = < T, op> (11-15)

For instance

< a(t,d(t,), e(t, 1) >

]

< 5(1'-,1'), a(t’T)q)(t,T) > (11*168-)

a(0,0)9(0,0) (II-16b)

or

a(t,8(t, 1) = (0,0)6(t,1) (1I~-16¢)

With this short review of the needed distributional background we

can turn to the operators of Dole‘éal.

III. Operations in _th; Operators

The kernels of most interest in systems analysis are those in m&i
that is, those of the form

t>g?
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G(t,7) = ‘E(t,T)U(t"T) (111-1)

with g infinitely differentiable, i.e., 'g(t,f)egt o Consequently we
’

L]

define specific operations on such kernels and give special notation to

certain of them,

For Eﬁ’ 32€§¢>1 the Volterra composition, ‘glogg, is defined by
=)
G, 06, (t,1) =f£1(t:§),§2(§,'r)d§ (111-2a)
=CcQ
t
= [fgl(t,ﬁ)gz(ﬁ,'r)dli}u(t-'r) (I1I-2b)
Vv, L)
T
As seen by (III-2bh), gl°£2E§t>r’ and consequently ~§t>1 forms a ring,

§t>1(°’+)’ under the operations of o and +, [10, p, 346]. However,
this ring is not commutative even in the l-vector case since in general

G, oG, # G,0G, as is seen by letting

1 1
t
Gl(t,T) = e u(t-1) {(11I-3a)
Gz(t,T) = u(t-1) (II1-3Db)
giving
t
G10G2(t,1) = [t-1]e u(t-7) (I1I-3¢)
t 7
G20G1(t,w) = [e’-e Ju(t-1) # G, oG, (III-3d)
Further there i = =
8 no unit element, ~Eu’ gﬁ€§t>1’ such that Equ = Soﬁu =

for all §§§t>1’ since, if there were, (III-2b) would require for the
specific choice G(t,t} = u(t-1) that
t

1= [ (006
T
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This is impossible, as is seen by letting t = 1, Of course such a Eu
corresponds to an nxn identity matrix of impul ses E(t-T)}n which are
not functions but distributions. In summary £¢31(°’+) forms a non-
commutative ring with no unit element.
It appears that in the scalar case GloG2 =0 1if and only if
G1 =0 or G2 = 0; this is certainly the case Tor degenerate kernels,
m
that is when 8, and g, are of the form zzhi(t)ki(T)’ m finite,
i=1
Such a result would be of intcrest for an alternate development (to be
described elsewhere) but is not of major importance for the ideas of
Dolezal.
Some elements of importance in € are defincd by (the n¥n

s
kernel functions)

(t—T)A-l

A6 =

u(t-nl , A > 1 (II1-4)
where I is the Gamma function, }n is the nyn identity matrix, and

A can be any real number not less than 1. Here we can actually take
H-h equal to the associated B in equation (III-1), if so desired.

It is convenient to define, for any EEE& {recall (II-11) for the mean-
ing of [.])

-)\)

4 (t) = [U,09001, A >1 (111-5a)

In all cases (III-5a) actuaslly reduces toa convolution, and, when A is

a positive integer, w(-K) is the Ath integral of lr. Since every
-

derivative of a distribution exists, (III-5a) allows w(k) to be defined

e

for every (positive or negative) integer %k whenever wegi, and then
[

(m}, (n) (m+n)

W) = v (II1-5b)

T

for all integers m and n.
An extension of this idea of defining the generalized integral or

derivative is important and vital to the theory. For any G of the
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L
form gu, as in (IIi-1), i.e., Gefyy,s and any yepl, [g(t,r)jg(w)] is
again a distribution in D"i_. To see this note that the following scalar
product is well-defined for Ge&’t>1 and can be expressed as, see (II-12b),

< G(t,n), @, (DY) > = <[G(t,D.y(D], P,y () > (I11-6)

If the support of ¥ is T > ¢ then the left side of this is zero for
?, if support t < ¢, and, thus, the right side must be also, which
shows, considering matrix component by component, that [G-qr]e ﬂ' when
¥ 1s. Consequently [Gw]( )
}?2 0 or by using (III-5a) when k< 0, for any integer k, By (III-6)

and use of the differentiation definition, (II-5), on other ¢ than
W

can he formed, by differentiating when

those in ‘R we easily obtain

[ G(t,'t)

W] = [6t,n)-p(n]® (111-7)
atk - - -

where Gef . , qrefj' and k is a positive integer.

wt>T

The point to notice here is that the space 5t> defines an

important class of operators, A[ ], which map ©' into 2y
—_— - Pd e ?

Yen

Alvl = [6(t,D -;Irn(-r)](k) (111-8)

These operators w}}[ ] form the core of the theory and could justly be
called Dolezal operators. The DoleZal operators are then seen to be
characterised by the nxn distributional kernels akﬁ(t,'r)u(t-'r)/atk
which have g infinitely differential.

As examples of such operators we mention the following four

derivative and integral l-vector operators:

V) = W) = [ut-0 (1Y < (B(t-n w(n] = bey  (T11-98)

Al =a v 6y 4 actrvet)

[a(Oult-0 (01 (111298

] (k+1) .

Al = vy = [uct-n) o k>0 (I11-9¢)

- 11 - SEL-67-052




aly] = v = [U_ (£, 4 (D], k>0 (I11-9d)

As a consequence of (III-9) we can represent time-variable
differential equations in the (general) form of Dolé;al operators,
(I11-8); most integro-differential equations also have this Dolezal
operator representation as will be seen in section VI,

By induction, see Appendix 1, we get the useful result for all
integer k > O,

k-1
i k
[gct, 0] =% 3(5 a‘}"’){u:(t)f“‘**%ﬁ ;;’T)U(t—w)-w(-t)] (111-10)
t L t Wiy
1=0

7=t
which 1s valid for E€§t>1’ EEE&. By observing this result in conjunction
with the definition of composition, (II-11), we see that the class of
operators under consideration are indeed generalized integro-differential
operators,

As an example of (III-10) let k = 2 and

6(t,m) = (re’-teDu(t-1)
then
2
g{t,t) = 0; ééé%zll l = (Tet-eT) , = (t-l)et; éggéiifl = Tet
=t =t t

From the integral notation of (II-11), (III-10) can be written here as

) ca =<}
St [ et-teHuct-nvinan = c-vetycn « [refutt-ny(oar
dt

In this section we have introduced the major concepts and symbhols
which allow us to express system descriptions in Dolezal operator form,
These operators are equivalent to a special class of distributional
kernels, our real interest in them lying in means of inversion for which

the concept of order is useful,
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IV. Order of an Operator

A Notion of considerable importance for the inversion of operators
is that of order. Several definitions are possible, but the following
one seems most useful,

Let ¢ be a fixed real constant (¢ = -w is allowed), then by
D'[C,aﬂ is meant the set of n-vector distributions in one variable

we

with support in the interval [e,«); for instance etu(t-l) ig in

' Cp' : . N to h
ja} [1,w) EL but not in p (2,0 By definition EFE& 8 said to have
order n over [c,x), denoted by rc(w), n = rc(gg, if n 1is the
— me
smallest integer such that w(-n—l) is a locally integrable function,
Yo

over [ec,w). For instance ro(b) = 0, r1(6) = -co, ro(u) = -1, rO(B’) = 1;

o0
y(t) =:E:6(t-i) has no order, In the definition, closure on the left
i=1
at ¢ 1is rather important.
The above defines the order of an n-vector distribution in 'g'[c’m);
the order of a kernel matrix Egét>¢ is defined differently., 1If
Eeﬁt>1 and if for all te[c,) [writing det for determinant]

q
det[éagtg-:-izl , ] £0; o> q>0 (Iv-1a)
37 4=t
dte(t, )
_5+ | =0;1=0,1, ..., g1 (IV-1b)
oT =t (if 9> 0)

then we define the order of G on [c,o) as
r(@ = -q (IV-1c)

Note that the order of a kernel G 1is always nonpositive when it exists,
However, since (IV-la) may be violated for some +t the order need not
exist,

The justification for (IV-lc) stems from the fact that, whenever
rc(g) and rcgﬁ? exist, then
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r gyl = r (@ + r. ) (1v-1d)
To see (IV-1d), we can form

v = w(q+1) (1V-2)

e Cpocd

where ¥ can be formed using (III-5). Then, as shown in Appendix 2,

q
(g-1) q+1
2( 1)1(-3—5-4‘— RECIE (-1)‘“1[3—5’—%(1: 1 -¥(1)] (IV-3a)
=t
g+l
= _.§.(_tL [ 2o + (—1)"“’1[8—8—'-3%%&-1)-&:(1)] (IV-3b)
a3 - e
T=t

The order of [G:y] is then equal to that of ¥, the term on the very
v iy
right of (IV-3b) having order less than that of Y (involving an
"integral” of V). Thus r ([G-I]) =r (¥) =r (¥)-q which is (IV-1d).
W C T A C au C ..
As examples we have:

1) G6(t,1) = (8 meZNu(te)
g(t,t) =0
dg(t,) ’ - _e2t
N 1=t

giving rc(G) = -1 for any finite ¢,

(1+e-T)u(t T)

1+e-t

2) G(t,7)
g(t,t)
giving rc(G) = 0 for any finite ¢,

3) G(t,7)
g(t,t)
giving rc(G) =0 for any ¢ > 0. Note that in this

tru(t-1)

t2

case the order does not exist if ¢ S_O.
The order of a Dolezal operator Al ]

Alvl = [gy] (0 (111-8)
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is defined as
rc(‘é[ D = k+rc(£) = k-q (1v-4)

An operator A[ ] 1is then said to possess finite order, on [c,=), if
r (G) exists,
C ™

The equation which will be of interest for inversion of operators
is the expansion of [ﬁ-q:] (k) is terms of g given in (III-10),

e | il

Since derivatives with respect to t, in place of 1, occur there,
the following equation which is shown in a straightforward manner, is

important, [2, p. 212],

k
k i (k-1)
k
2&ED | > ol QELD | (1%-5)
ot T=t i At 1=t
k ]
Here () = ryTT-

Letting k = q shows immediately that the derivatives with respect
to T, in (IV-1), can be replaced by derivatives with regpect to t;
that is, rc(g) =-q if and only if, for all te[c,w),

q
det[a_\ﬁn@ﬂ l ] £ 0; o> q> 0 (IV-62)
atq T=t
ai {(t,1)
=BT | _o; i =0, 1, U | (IV-6b)
ati =t ™

At this point we have all background tools for the inversion of
Dole;,al operators., Because the order of vﬁ. may not exist over some
intervals, different inversion resultsg obtain depending upon the interval
under consideration, But if G has finite order over [c,®) then we

are most interested in yYep' for [&.3&]_

e [c,m)

V. Inversion

If over {c,») an operator Al 1 defined by
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](k)

Al¥] =[Gy (I11-8)

has finite order, that is rc(é[ 1) defined and finite, then, for
ﬂreD [e,=)* '&[ ] can be inverted by the process to now be given, That
-1
L]
is, for irep”[c,m) we will find A "[ ] such that

ATTALYI] = ATV = ¥ (v-1)

Let rc(g) =-4, ®*>q3> 0, then for all te[ec,») by (III-10) and
(Iv-62)

q
[g.E&](q"’l) = (a—*gn(qt’—ﬂ l )}l,{‘(t) + [——E-’g{t—u(t-'r) -”\l{q('r)] (V-2)
t =t ot

Since the first coefficient on the left is never singular for any

te[c,x) we can invert it. Thus define

q
a(t) = a_g.(_':_’.ll l (V-3a)
- ot =t
_ q+1
E(t,) = a l(t) "_ag?fij‘ (V-3b)
-~ t
S(t, 0 = g(t,Dult-1) (V-3¢c)

We note that, since g.‘.(t) may have a zero determinant for t < ¢, g_

may not lie in § To cure this and guarantee we can take

> t>'r

a(t) for t<c to be any nonsingular infinitely differentiable extension

of a(t) for t> c. This will be done where necessary, but since
‘yevg’[c ) this extension will usually be immaterial, as we are then only
~ 2

concerned with te{e,»). With the definition of (V-3), (III-8) becomes

AV = @O E® + [G,0 g0 ) ETD (v-)

The idea of decomposing v&\ in this manner is the most important one of

the theory. This operator can be inverted in two steps with the use of
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some results on integral equations. First we write (V-4) as the product

of two operators

A1 = O (V-5a)
L8] = 2 GW® + (G, 60D (V-5b)

such that (V-4) becomes
ALyl = 408,061 = A .40 (v-5¢)

which serves to define the product notation, ~A~1.A2[ 1. &1[ ] is easily
inverted for any (positive or negative) integer k-1-q [using (I11-5)]

A [g] - 'S_(q+1-k) (V=6)

The inverse for véz[ ] 1is found by noting that (V-5b) defines an
integral operator. Thus we find an .';‘I(t,fr)c-:‘it)'r such that [Q is of

course the nxn zero matrix]

E+8+pof = E+8+fom = o (v-72)
for all tefc,w); an H can always be found from, [11, p, 45],
-]
- Z(-ni[c‘;)i (V-7b)
wt o
i=1

~. 1
where [S‘] represents the ith Volterra composition, formed by repeated
Volterra composition from (I11-2), A;l[ ] can then be given as

-1 - _
A8 = 2w gl ope, 0L (v-8)

This is seen to be the inverse of -%2[ ] by the following reasoning,
We have
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&;1[52[511 = 2w (2 ) + [GE,D-E(DD) +  (V-92)
[a7 (O, D+ (200 ¢ + [Elr,m) -Em])]
= E(t) + [g(t,T)-é(T)] + [H(t,T):&(T)] + [ﬁ(t,T)-[E(T,n)-Efn)]] (V-9b)

Now the last term on the right is simply [(;\Ioé)-g], which is easily
LY
seen for geg by using the integral of (II-11) (for other £, we use
b Catal
< ['};(t,'t)'ﬁ('r)], tpl(t) > = < E(1n), ['f(t,'r)-CPl(t)] > ). Using this
Lol L LY Lo 2V
fact, combining all square brackets in (V-9b) and applying (V-7a) gives
-1 -1
A, [,&2[5“]] = t. Similerly one determines that Ay A, T[] is also the
identity operator,

-1

Consequently, if l,&[] has rc(éf 1) = k-q finite, A [ ] is

ined f ¥
define or every ..‘EE.Q [c,) by

é:l[ 1 = ﬁ-l(t)ﬁﬁl(q+l_k) +

A2 (2 (0ECE, D - (y) (v-10)

(q+1-k) ]'l

Equation (V-10) is the main result of the theory. It gives an explicit
means of finding the inverse of a Dolezal operator and hence a means of
finding inverse kernels ;I'_‘(_l) to given kernels T, 3\‘(_1)02 = B}\n’
as needed, for example, for the synthesis of time-variable networks

[¢]. As a very simple example, let
G(t,t) = e u(t-1)

then on any interval [c,») this has order zero, i.e., rc(G) =0, If

dz[ fe'ru(t—'r)xl;(ﬂc)dﬂ

2 -
Ayl = (6] - R
dt
then we can write, by (Vv-3),
a(t) = g(t,t) = et

ot Bg(E,T)

g(t,7) = 0
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which gives G = 0 and thus by (V-7b), H = 0, Consequently, by (v-4),

[eTu(t-T)-$(T)](22 k

"
N

Aly]

]

[etq;(t)](l), k-1-q = 1

= M r) 4 ety

which is intuitively checked by differentiating the unit step function
under the (symbolic) integral used to define Al ]. By (v-5)

Q(l)

]

A [t]

A2[§] = et
By (V-6) and (V-8)

-1 (-1)

aer =t

e_tg

/]

-1
;L)
which gives, equation(V-10) with (III-5a) and H = 0,

-1 - - -
AT = T o e Hutt- o]
t

e‘tjf Vv{t)dr

-0

The most important use for the presented theory seems to lie in the
area of finding distributional kernels (impulse responses) for physical
8ystems described by integr-differential input-output relationships,
These are next considered,

VI. Applications to Time-Variable Integro~Differential Equations

The previous ideas can be applied to systems described by linear
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*
equations of the form

_ (n) (n-1) _
ﬂﬂz] = 2y + 8 1% oo+ By o+ {EI:X] (VI-1)
_ _ (m) (m-1)
= Blx] = hx' «+ IS + ...+ b x + [G, x]

where the 31 and 21 are nxn matrices which vary with time; X and

Y, are input and output n-vectors. This application is made by rewriting
Al ] as

_ 1) (n) (n-1) _
Ayl = [6,-y] SRS YA e vay+ [yl (VI-2)

through the use of (III-9). For this one uses the readily established
fact that, [2, p, 211],

J
(> _ _yi (1) L (3-1) _
g0y m = Y entay (VI-3)
i=0
to rewrite (VI-2) as

noj
- i (1) _,(3-1i)
ALyl = z Z(-l) oo + [Gy1y] (VI-4a)
J=0 i=0
n
- (k) .
=D @™ + ey (v1-41)
k=0 |
which serves to define the Sre? for instance
i
C = 8a
"1 wn
_ (1)
wn-1 S TAn Tl

Here we use m and n as the highest orders of differentiation., No

confusion with their previous uses as the number of variables or size |
of matrices should result since these latter are never mentioned beyond .
the first paragraph of this section, ;
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and in fact for any k
n

Sae = z (~1)£"kg§£'k) (VI-4c)
£=k
Using (1II-9c), which for reference is

(k) (k+1)

v = [“(t"‘)}n',‘f.(‘)] (III-9¢)
{VI-4b) becomes
n
Alyl = ) (a0 g (3] 4g ] (VI-5a)
k=0

Using (III-5a) we can then write, since uu = u,

n
ALY = [g0F, 1 (60 @1 Ty ce,0008 6,001 (r1-sm)
k=0

_ o1 (L)
= 18y

Clearly, by comparing (VI-2) with (VI-5b),
n
Gyt = > g (OB (6D + T (808 (5,0 (VI-6)
k=0
Intuitively the above process amounts to realizing that derivative
operators are equivalent to impulsive integral operators. But impulses
are themselves derivatives of unit step functions. Consequently, we
converted to impulsive operators, expressed as derivatives of unit step
functions, at (VI-5a2). The n+l times integration through U is

wa=n=-1
used at (VI-5b) to combine terms inte the derivative of one integral

operator, &y. Since

n-1
-k
(t-n)"
Syt = 8, (Dult-1 "'Z.c.k('f)mu(t-'r) + Ut 8006, (6,1
k=0

it is seen that E&(t:T) has order -1 if 2 (1) 1is nonsingular for all
T. Consequently, from (VI-4) and (VI-2) we see that
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rc(g[ D =n 1if det an(t) A0 for all teg[c,®) (VI-7)
Therefore, in this order n case, (VI-1l) can be sclved by using the inver-
sion of section V,

The operator ‘R[ ] can be converted to the same form i,e,,

Blx] = [6x1"™ and then (vI-1) is
ﬁ*[.é(] _ [E'y'.,?f] (n+1) _ E[r}&] - [gx.mj(mﬂ) (VI-8)
giving
= A 0GeE ™1 = 47 s5)) (vi-9)

Unfortunately the computations for obtaining ﬁ{i are usually
prohibitive, since exact evaluation of ﬁ‘ of (V-7a) is determined by
using an infinite number of integrations and summations., However, it
appears that the method should be very suitable for finding approximate
solutions by means of a computer.

As a simple example to illustrate the difficulties, consider the

voltage transucer network of Fig. 1. Then

rldcv2 (s :t'l)V _ i
aT * r, 2 = "1
2
or, with vy =% and Vo = Y
t . (1 1
(e Y)( . y = 35x
giving ]

Aly] ety ® 4y

[ETU_I(t,T)-y(T)](z) + [U_z(t,w).y(T)](Z)

]

[(e"U_ (6, + U_yt,0) 3]
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Therefore, with k = 2 and A[y] = [Gy.y](z),

Gy(t,T) eTu(t-T) + (t-f)u(t-1)

(eT+(t-1) Jult-1)

giving
. agy(t,f)
gy(t,'l') = e +(t-1); 39t — = 1
Thus
t
gy(t,t) = e

and q =0 or rc(Gy) = -1 <for any finite e,
By equation (V-2) we write

[GY'Y](O+1) = ety+[U(t-¢)-y(1)]
giving, by (V-3)
a(t) = e*t

86,1 = &% B(t,0 = e tut-n

and
AY] = (7t + (o tu(ten) y(n ]y) (210

= (™ + e tutn .y ]y ®

Then

ale] = ¢®
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A lE) = et « [e_tu(t-'--r).x(-r)])
t
arel = ¢ - [U_, (t,1) L] = [u(t-1) .£(D)] = f‘;('r)d'r

To find H for Agl[ ] we must form

H(t,T) -G(t,7) + GoG - GoGoG + ...

e_tu(t-T)

But, on recalling G(t,T)

t

an(t,f) = er'te"gdg)u(t—f}
T
-t

= e [e-T-e"t]u(t-T)

[e_(t+1)-e—2t}u(t-1)

)
&
[
It

t
GoGoG ¢ jﬂe-t[e“(§+T)-e-2§]d§)u(t—1)
T

= e—t[e-T[e“Tée—t}+ l[

e—2t
2

e-zT]]u(t-T)

{e—(t+2'r)_e-('r+2t)+ %e-st_%e-(uzﬂ

1]

Ju(t-)
etc., i,e.,

H(t,T) = {-e_t+e-(t+T)~e—2t+ %e-(t+2T)_e‘(T+2t)+ %e'3t+...]u(t—1}

h(t,t)u(t-1)

which in general is quite difficult to explicitely evaluate, Then, by
(v-8) A'[E] = %5 (t) + [€MHCt, ). E(®)] by (V-10), we finally then

arrive at

(-1)

N X e, - 1510
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t t
= -tf'ﬁ(‘t)d'r-l- fe h(t,1){ f—(a)do]d’r

- -0

VII. Summary of the Concepts of Dole%al Applied to Systems Equations

Given a system of integro-differential equations

t
_ (n) i
-‘5[.3:] il 4 +"'+f'o£+ fEl(t:T)vX(T)dT (VI-1)
-0
t
(m)
= EMZ' +"'t§oﬁ+ jf.Ez(t:T}i(T)dT = a[ﬁ]

=00
where x is a known input vector and the a's and b's are time vary-
vt LY}
ing matrices, the method of this paper solves this system by an operational
means, Since y, the output vector, is the unknown, we really are only
et

interested in inverting the operator

t
Aly] =3n£(n)+"'+301+ f§1(t’ﬂ,¥(ﬂd1 (VI-2)

By converting the derivatives to impulse terms A[ ] 1is converted to one
integral operator (precisely in eqs, (VI-2) through (VI-6)). By (n+l)
integrations the impulses are turned into unit step functions in a new
"kernel" Ey(t,T) = §y(t,1)u(t-1), one then differentiates (n+l) times

to cancel out the integrations. The result is the representation

t
AL = U [ gt 0yean ™D o (g .y @) (VI-5b)

IT the leading coefficient matrix, a (t), is never singular in an
interval of interest, c«< t w for some c, then _&Lz] i1s a special
case of an operator of finite order, in fact of order n, It can then
be inverted, at least for those (distributional) pA which are zero for

t < c. For the inversion one uses the theory of section V, now applied
to this special case., One writes
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Alyl = [Gy-g](ml) (VI-5b)
with
) Bg (t,7)
(6,317 = & (yt)+ f—d—-ymm (V-2)
€ agy(t T)
= 5,®Fws [ (t)T-yde]
-0
Writing
a(t)y = 2 (t) (V-3a)
_ ag (t,1)
gy(t,w) = (t)T_" (V-3b)
this expansion taskes the explicit form
t
g3 = s [E 0y (v-50)

—00
The inverse of ﬁi 1s A—l[ ], 1is found by inverting this last equation
end then integrating n times. The result is

t

T o= o™ [ e, (e Mar (V-10)

)

=0
where, by a series of Volterrs compositions,
t t &

Byt = -,éy(t,mfgy(t,g)gy(g,rr)dg- / [ &y Ct:808 (6,008 (0, doue
T T T

GEEeRer (V-Tb)

Applying this inverse to (VI-1) gives the output in terms of the input

= AT'[B[x]]

y
A
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The philosophy is to convert to an integral operator with e
functional kernel, (V-2), This kernel is inverted using the integral
equation theory of Volterra, which justifies (V-7b). However, one has
to use care since impulses are heavily relied upon, Consequently one
must employ the theory of distributions and proceed with equations and
quantities whose properties can be precisely determined, Calculationally
the theory is difficult because the Volterra series of compositions of
equations (V-7b) must be used. But it appears that some uses could
occur in computer analysis and in synthesis, the latter particularly if

factorizations of operators could be given,
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Appendix 1
Expression for [g(t,'r) ()] (k)
Vs

We first show that, where £ = k-1,

k
[ect, 01 = [a—g-‘,f—"’lu(t--:)-wﬂ] "
t faaal

£ 2-j (m)
> > et a——%_‘—:l’ﬂ | ¥
J=0 m=0 at =

Demonstration: We give the details for scalar matrix quantities,
k
< [G(t,T)-w(T)]( ), ml(t) > = < [G(t,D).¥(D)], (—l)kwl(k)(t) >

k
= < G(t,7), (-1) @1(k)(t)W(T) > = §_E£E;El, P, (O () >
£

Bkg(t,T)U(t-T)

= <
T

_ ky g (t, ) (k-3
= < JZO(J) —T‘j’T—u J (t-T), q:)l(t)lff('l') >

- a g(t ,T)

at u(t-v), ¢1(t)w(1) >

3 g(t, ), (k-
Z G D < LEE, D 9, (DY(0) >

3k t
= < [ g; ’T)U(t~1) v(t) ], ml(t) >
y BJ
£+1 g(t, ). (4~
+ Z ( j ) <_a'tJ—-—5 ‘j)(t--r), qu(t)w(T) > f = k-1
J=0
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The scalar product terms of the summation are

J
. d g(t Vg (2~ D ey, @y (¥ (1) >

>td

]

> g(t,T)

< Bcﬂ"J)(t—w), -—5—3———¢1(t)w(1) >

h
36~ J[B g(t,-r) LW (D)
< 8(t-1), (~1)f~d > =
3tf-d

2-3 S-n

- _ 1y E-d £-3 (m) g(t,r)
=<be-m, (1PN (ol ™ S >
m=0

_ £-3 3y m o ¥ e,
=< 1, (-1) z (£m )(Pl (t) —EE—’-—TitW(t)

Z ¢y e g‘t 2 v, o0 @y 5

£~
£ -
= Y eufimdey o @0 1™, 0.0 5
-
m=0

which proves the asgsertion, when matrices are investigated component by
component,

We can now show (III-10) by induction. From the expression just
derived, for k =1, we get

(gt ®1Y o (ELDu(eny (o] 4 (g(t,D | ¥(t))

'1,'.—.1‘.

Assume then for any k, equation (TII1-10)
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- S e

k-1

rgce, 0y 1% <y [(—?‘t—")l (1)) E--1) [—?‘t—"—u(t 04 (0]
w A t
i=0

pifferentiating this

k-1
gee, oy 2§ [—-g(&l | e ®D [—ﬁ-"—”‘u(t Dy (n]D
. ~ t =t

i=0

Applying the above result for the first derivative to the last term on

the right gives
k-1

i
[G(t,'t)tlr(t)](kﬂ) Z NAGT0) (t,'r r pepy) D
>t q=t
i=0
ak-i-l (t,7) 3 b
[_Jﬁﬂ_]_—,—u(t Ty (1) ] + (_-Ea_’_._ , E(t))
dt¥ R
kK 4
i, Z[a BT |y (1) (B [T%S_Tu(t_ﬂ .
t T=t
i=

which is (III-10) with k replaced by k+1, This is then true by
induction for all k,
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Appendix 2

Expression for [G ‘I'(m'l)

]

Here we show the validity of equation (VI-3). First we can obtain,

with v = (“'*1),
n+l
[gy ™ - (-1)“"’1[3——ﬁl—u(t D2(n] +
n n-j n
D> TR ) QELD iy,
frr e’ J ™Iy

Demonstration: Again we give the details for the scalar matrix case,

< [G.V¥], q)1> =< G(t,7), q:l(t)xb('r) >

n+l
=< 66D, o0y "> 2 (M EULD 4y >

aTn+1
n+l 3
=< -1y z (_1)n+1-:l(n;~1) a_gd(?_:_'f_)u(“"l'i')(t--r), Py (D¥(T) >
320 o1
an-i‘l
< (_1)n+1 g(t,T)

u(t-7), ®, (t)¥(7) >

Z 1) (n+1 3 g(t,-t) (n+1-3)

(t-0), cpl(t)‘l’('r) >
3

n+l 8n+1g(t T)
=< (-1) [-_BTH:J'—,_u(t-T) ¥(1)], fpl(t) > -

+ z (—1)%“}1) < é—g—‘t—"’a‘“ D ter), o (¥ >
39 1
§=0
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The scalar product terms of the summation are

j
< Q8D (=D gy P, ()Y (D) >

BTJ
<8P en, %ﬂml(t)?(fc) > =
“'Jt%ﬂmml
< B(t-1), (-1 _ > =
dt"d
n-j
-3 -j, gt
<sct-n, (1™ N é-;ﬁfj—a";cp ™o > =
m=0
n-j a
n-j w3y ety (m) ~
<1, (-1) Z ( at“'_JSj I‘E(t)cpl (t) > =
m=0
n-j
n-j n-j g (t,1) (m) ~
2(1) v DA S G
n-j
g (¢, ) (m)
DIy« CELD ) gy ™ (0 >
EZ 3t jBTJ =t e

which proves the desired formula, when we consider matrices component

by component,

In this formula let n = 0, then

gy ™1 = 0B Du e g 0] + g(t,DE(D)

Now assume, for any n that

(n-1) n+l
[gy (™) _ z( 1) (_E.____a(t"‘ RO (-1)“*1[3_3.%%:2.u(t--:)w(¢)]
T 1=t T
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Then letting x =‘2(1) this gives

n i (n+l-1i) n+1
[E_g(mz)] =2(-1)1(a—§£@ [)8 (1) + (-1)“*1[%%:_’211(':-1) 0% ()]
i=0 T 7=t T

Applying the above result for n =0 to the very right hand term gives

n
i (n+1-1)
(2™ = S nté a(I’T) | 52, (B
T

i=0 G

n+l n+2
+ (-1)“"“1[8—8&“_’"‘.’. | 2¢t) + (-1)[3—5&;_3"114@-1) XION!
T t T

n+l
T=

n+l

i n+2
- Z il 5(:,1) , )£(n+1—-i) . (._l)n+2[a ng(t,'r)
i=0 ot 1=t ot

which is the previous formula with n replaced by n+l, and, thus by

induction the result of equation (IV-3) is proven,
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