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Abstract: This paper gives two main results for nonlinear time-invariant

networks: 1) The fact that all dynamics can be placed in unit linear
capacitors and 2) a computer oriented analysis method for the resul-
tant resistive structure, This first results through the introduction
of a nonlinear resistive 3-port while the second relies upon topologi-
cal means., Taken together the results give an effective digital
computer method for setting up the canonical state-variable equations

of time-invariant nonlinear networks,

"and yet, through all this tangled complexity and sometimes confusion,
it is impossible 'not to fall ultimately, as into a heresy, into

unheard-of-simplicity'" [1, p. 46].

Introduction

It is well-recognized {2, p. 59] that the analysis of nonlinear
networks is most often carried out in terms of the canonical set of
first order state-variable equations describing the network, Such

state-variable equations are of the form

=f({xD (1)
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where_& is the state vector,_x_the output and u the input to the net-

work; f(.) is a, perhaps nonlinear, transformation which reflects the

laws and interconnections of the network elements involved. Since in
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fact one of the heaviest uses of digital computers lies in the area
of nonlinear network analysis [3, p. 75], it secems expedient to have
available simple and general means of setting up these state-variable
equations applicable to computer-aided analysis., And of course by
extension such suitable methods can lead into the productive area of
design,

To be sure there are several available techniques for setting
up the state-variable equations for nonlineasr networks [2, p. 64]
[4, p. 196]. Here we give an alternative which in general is more
applicable to obtaining the canonical equations on a2 computer; also
it may be considered simpler to apply or to give more conceptual
insight since it reduces the real analysis to that of a purely
resistive network, Once this, or any other method, has beén used
to obtain the state-variable equations, solutions can be pursued
following standard computer routines and techniques [5, pp, 1539,
1545],

In setting up state-variable equations one of the main problems
is the proper isolation of derivative determining elements, these
latter being called.dynamical elements, In previous work [6] it has
been shown how time~variable dynamical elements can be replaced by
time invariant ones seen through time-variable transformers with the
result conveniently leading to stability results [7] and passivé
characterizations [8]. For nonlinear networks it has also been
shown [98] that the introduction of the mutator, the reflector, and
the scalor allow for the generation of arbitrary nonlinear struc-
tures by appropriate resistive loading, while ancther study has inves—
tigated nonlinear resistive building blocks [10}, Here we show that
any finite time-invariant nonlinear network can be considered as far
as its portg are concerned as a nonlinear resistive structure loaded
in linear capacitors (somewhat the converse of the result of [9D).
This result is obtained by an equivalence which replaces nonlinear

dynamical elements by linear ones loading a nonlinear resistive network,

(2]
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The final analysis then reduces %o the generally easier problem of
analysis of resistive networks, TFrom such an analysis, which can be
programmed following the topologically oriented scheme discussed in
Section III the canonical state-variable equations are relatively
easily set up, when they exist, in & form convenient for digital

computer analysis,

Equivalences

We first investigate an equivalence for nonlinear capacitors
which gives the basic idea from which the method stems, This is fol-
lowed by a duality consideration which allows for actual computer
calculations on many of the resistive structures resulting upon
capacitor extractions, ‘

A, Capacitor Equivalence

It i, q, and v are the current through and the charge and

voltage on a time-invariant (one-port) capacitor then, assuming

appropriate differentiability,

.i = dg(v) _ da(v) dv_ (2
Todt T Tdv dt

.

I next we consider the nonlinear 2-port resistive network described

by the general desecription

1 -1[w} =0 o 7[i | (3)
da({vy)

Then we find upon loading (at port 2) in a unit capacitor and identi-
fying i=ig, v=vy, that Eq, (2) is verified at the input. The process

is illustrated in Figure 1.

In order to construct a device with the general description (3)
it is convenient to consider a2 more universal 3-port called a VACCCS
(voltage adjustable current controlled current source), The VACCCS

is defined hy

[3]
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0 0 0O 02 a(vy) -1 of |i, (4)
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where a(+) is the voltage dependent current gain," A representation
of the VACCCS is given in Figure 2a) while an interconnection of its
ports, as shown in Figure 2b), gives a construction of the resistive
2-port of Eq. (3).

In summary a nonlinear capacitor can be replaced by a VACCCS
constructed resistive 2-port loaded in a unit capacitor, By making
a matrix expansion similar to Eq. (2) the result extends to coupled

and multiport capacitors, .

B, Conversion to Dual Variables
To make the method to be described widely applicable it is

convenient to note that a gyrator, described by

Ll = 0 ¢ v

. (5)
i, -g 0 Vo

and symbolized in Figure 3a), can be used to convert a load network
N into its dual Nd as illustrated in Figure 3b)., In the dual con-
version process it is of particular importance to note the gyration
conductance sign and magnitude, g = +1, adapted for nonlinear situ-
ations, As an illustration to make this clear, if -iz = f(vz) then,
from Eq. (5), v; = (l/g)f(il/g) which yields the dual if g = +1 but
not in general if g = -1,

Since the dual of a capacitor is an inductor, Figure 4a) shows
an application of Figure 3b) which allows all dynamical elements to
be assumed to be capacitors. Taken in conjunction with the results

of Section IIA we conclude that any dynamical time-invariant

[4]
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element can be represented through unit (uncoupled) capacitors load-
ing a nonlinecar and nondynamical (e.g., resistive) network, In fact
for later purposes it is useful to observe that the dual transforma-
tion of Figure 3b) can be used to obtain a current controlled resistor
from a voltage controlled one, as shown in Figure 4b).

With these preliminaries we can turn to the actual establishment

of the state variable equations,

Capacitor Extractions - State-Variable Equations

Given a network constructed of a finite number of (nonlinear,
time-invariant) circuit elements we can make the equivalences of the
last section to remove all dynamical elements as unit capacitors,
This yields a resistive network loaded in unit capacitoré, as shown
in Figure 5a), which is equivalent at its ports to the original con-
figuration.

For concreteness of the treatment let it be assumed that what
is of interest is voltage transfer from a set of first n ports to a
second set of m ports; the external ports can then be partitioned as

shown in Figure 5b), We will further assume that the hybrid equations

Hn = Jix
i2 y2 _ (6)
va i3

el

exist, Sufficient conditions for the existence of the nonlinear
hybrid transformation J}(-) are available [11, Thm, 4], Along these
lines, if "the Jacobian matrix of H (<) is uniformly positive
definite" then all other hybrid descriptions exist [11, Thm, 3]; for
example, the admittance transformation may always be obtained from
any other bybrid transformation under the uniformly positive definite

assumption.

[5




Setting x = v3 for the state k-vector of Figure 5b), with 1,

denoting the k x k identity, we find the state-variable equations as

Xl=19 o -1g|kdy ]
0, (7
va 0 1, 0| &

That is, the state-variable equations result from Egq, (6) by ignoring
the first n rows, identifying capacitor voltages as the state, and
setting the final m port constraints ig = 0. We have also transposed
the final m and k rows, after multiplication of the latter by minus
one, in order to place the equations in the canonical form of Eq. (1)
[12, p.40].
As in the linear case [13], the problem of setting uﬁ the state-

L]

variable equations is reduced to that of finding a hybrid description
of a resistive nmetwork., Using topological means the analysis to de-
termine this hybrid description is relatively easily formulated
[14, p.51] and in fact in a form suitable for programming on a com-
puter, though presently available routines for this type of cne
element kind network are time consuming [5, p.1544], Here we
describe one possible technique which is particularly suitable for
digital computation determination ofli(-). . .
In many instances internal components can be assumed to have a
resistance (current controlled) description, perhaps by the use of
gyrator determined transformations as in Figure 4b), Further the
insertion of m unit gyrators at the second set of ports (output)
allows }((+) to be considered an admittance as Eq, (&) shows (the
unit gyrators set is = Qz, vz =3‘L_2 or 1{_(9) =3 if we also set yv;

1, Vs = Va, 47 =19, i3 = 13 and collect th tors in v and 1)
3_1,___3_;/3,_;_.1_&1,&3_3‘3 and collec ese vectors 1n_g‘a2_‘1~.
Thus, for analysis purposes we wish to assume voltage sources v
applied to the (n+m+k) ports of the network determining }((«). Let-
ting e be the vector of total branch voltages, as shown for any

branck in Figure 6, i and Vb be the branch element current and

(6]



vol tage and ¥s the branch source voltages (polarity as in Figure 6)
we obtain
e=x, -y =2(B-(1b) -

(8)

j>io

Here;g(-) is a nonlinear (branch by branch) resistance transformation
defined by the (current controlled) circuit components, while we
assume the applied voltage source branches to be numbered last. By

a proper numbering and application of Kirchhoff's laws we can obtain,

with § the tie-set matrix [15, p.29]

EE = 2 {Kirchhoff Voltage Law) .'(Qa)
(Kirchhoff Current Law) (9b)

Here éﬂ is the set of link currents and the tilde denotes matrix
transposition; by assuming the links for final numbers the tie set
matrix has its last 4{= number of links) columns as the identity
(15, p.30] ’

g= [1:] n (9¢)
i

L=

£y

If we also (reasonably} assume that all sources, 9}, are independent
[that is, there are no more sources than links], Egqs. (9) applied to

Eq. (8) yield

?

.-

iy 2 B
[g] =IR(TL Y =BG (10)

which serves to define the transformation @_(a), ﬁ(-) =§_’_m_(:fi‘}), from
link currents into link voltages., Now the port currentsii are the
final entries of EB SO we can representlgj-), which is numerically
equal to the admittance under calculation, as the final portion of

the transformation inverse togi(.); symbolically

3=k > )], =H® (11)
v :

—

[7]
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where the subscript 2 denotes the "lower' portion,

Tor digital calculation J, R(s) and ﬁ_(-) are relatively easily
formulated while the inverseﬁ"l(-), is the most difficult step; but
it has been pointed out that the method of Broyden is available and

very convenient [16, p, 1821], .

Examples

To indicate the procedures we investigate two examples,

First, to illustrate the linear capacitor extraction scheme we
consider the equivalent circuit of a tunnel diode as shown in Figure
7a) [17, p. 1916]. The diode conductance Gp(+) represents a voltage-
controlled nonlinear time-invariant purely resistive element given by
the current-voltage characteristic ig = Gd(vd). As explaiﬂed under
Section IIB), through the introduction of the gyrator, this voltage-
controlled element can be converted to its current-controlled dual,
vp = Gd(iD), as needed for the branch by branch resistance trans-
formation ®(e), while in the same way the linear series inductor, L,
can be converted to.its capacitor dual. The equivalence of the non-
linear capacitor [17, p. 1916], described by q(vd) = Cd(vd)av =
de/(V -vd)N with K,N, V constants, is obtained as a current-controlled
nonlinear resistive 2-port loaded in a unit linear capacitor through
the use of Figures 1,2,3b), The final tunnel diode equivalent appro-

priate for the analysis method is then shown in Figure 7b),

As a second example, to illustrate the setting up of the canon-
ical state-variable equations, we consider the simple single-input
single-ocutput circuit shown in Figure 8a) where the nonlinear resistive
element is as denoted in Figure 4b), and the linear capacitor is assumed
of unit capacitance by normalization; the resistor r is assumed linear,
After appropriate conversions the circuit's equivalent is shown in
Figure 8b), where branch numberings are also indicated., A suitable
graph is given in Figure 8c¢) where darkened branches belong to the
chosen tree., From the graph the tie-set matrix is easily deter-
mined and the branch by branch impedance results directly from Figure

8b); thus
[8]
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1 1 0000100 1 00 0 0000
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0 1 00000O01 00 00 £(-) 0000
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b —
where £(.) operates only on the variable in its column, the other entries
following standard linear matrix algebra rules, Combining gives
?,_\_(.) = gR(T) = [£() 1 -10 -1 (12b)
- -1 0 01 O
1 0 r0 0 E
0-1 00 O
1 0 00 O
from which the inverse is calculated as
=1
R (») = 00 0 0 1
00 0-1 0 (12c)
oo & 0-%
01 9 0 ’%
-10 -2 {-I-.+f(-)}
As explained in Seection III, Eq. (11), the final portion of -the transforma-
tion inverse to ?‘ﬁ(-) is H(+). Therefore, since the first two link source
voltages are zero,
) =13 21
Xm0 2 (12d)
? o] 11
—; -1 {;-I-f(o)}

(9]
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On next performing the operations of Eq, (7) we finally arrive at the

canonical equations

HS
]

X 1

v =% (121)

- These equations can easily be checked by direct inspection of Figure

8a), but note that the procedure we have used gives a systematic

method suitable for general analysis,

Discussion

By using a capacitor extraction the state-variable e&uations
for a voltage transfer network have been formulated, Eq, (7), through
2 hybrid description of the nonlinear coupling resistive network,

The result is valid for finite time-invariant networks for which the
decomposition of Eq. (2) is true, Although the same technique applies
to linear time-variable networks its extension to nonlinear time-
variable structures does not seem apparent because of an added term
dq(v,t)/Ot needed for Eq. (2).

Of interest then is the general result that for finite nonlinear
time-invariant networks the dynamics can be assumed placed entirély
in unit (linear) capacitors, this result being that upon which the
theory of state-variables for nonlinear structures has always rested.
Thus, it is no surprise that using this extraction we are able to
obtain the canonical state-variable equations, when they exist. For
sure these canonical equations need not always exist, as is readily
seen by replacing the voltage controlled "resistor' in Figure 8a) by
a current controlled one. Nevertheless, when applicable, in contrast
to more classical approaches, the method presented reduces in the
end to an analysis of purely resistive circuits to which the topolog-
ieal formulation indicated is relatively easy to apply. TFor sure we
have only outlined the ideas for voltage to voltage transfer,

Figure 5), but other situations are handled in like manner, generally

through the use of some other hybrid description, In the text we

(10]



have set up the analysis by treating the hybrid matrix as an admit-
tance through appropriate gyrator insertions, 1In general this is
actually the most convenient for setting up all-purpose routines,
but in special cases it may be more convenient to omit the extra
gyrators by calculnting'ﬂf-) as an actual hybrid transformation, To
be sure there are situations, as in fact the second example, where
the state-variable equations can be found almost by inspection, But
the methods used in such instances do not, as yet anyway, seem
Programmable to handle general structures, Hence the importance of
the method discussed, which in fact uses less storage than at first
appears necessary, due to the sparsity of the matrix transformation.

The capacitor equivalence is easily formulated in terms of the
VACCCS for which one would desire a suitable electronic circuit,

But the problem of physically constructing a VACCCS is compounded on
two accounts, The first involves the desire for a floating short
cirecuit, port 1 of Figure 2a); integrated structures for a VACCCS
having all ports with a common ground are relatively easily formu-
lated, but the floating port requirement, though manageable by the
use of gyrators, yiélds unwieldy circuits. Nevertheless any given
Structure yields a specific gain function a(.), and it does not seem
as yet possible to devise 2 means of obtaining an arbitrary a(s);
this is the more comprehensive second difficulty, p]

As with the previous time-invariant method [13],.and as dis-
cussed here, the primary advantages of the technique presented seem
to be in the computer aided analysis and design fields where the
calculation and specification of the resistive portion is compara-
tively straight-forward. For example, recent steady state analysis
using computerized optimization techniques [18] can readily be
applied, Nevertheless, future use for the synthesis of nonlinear
networks seems quite promising,

"We do not need theories so much as the experience that is the

source of the theory." "And any theory not - founded on the nature

of being human is a lie and a betrayal of man" [1, pp. 17,53].

[11]
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