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ABSTRACT

The regions of allowed natural frequencies in Re p > 0 are determined
for two different circuits which correspond to linearized equivalent
circuits for tunnel diodes. Passive networks to obtain any possible

natural frequency are given. Multiple-diode circuits are treated, and

for identical diodes it is shown that the best results occur with two

diodes.
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I. INTRODUCTION

In a recent paper Kinariwala [Ref. 1} found the bounds on the natural
frequencies obtainable from a single tunnel diode embedded in a lossless
but passive network. In obtaining these results the linearized equivalent
circuit was assumed to bé a negative resistance in parallel with a capaci-
tance. Here we begin by considering essentially the same problem, except
that more general linearized equivalent circuits are used. Two such
circuits are considered. The first adds a series (loss) resistance to
the parallel resistance-capacitance circuit, while the second adds a
series (lead) inductance. The results are then extended to two or more
diodes, with typical curves and passive networks being presented for the

case of identical diodes.

The general idea of the method is as follows. After a convenient
normalization the results of Desoer and Kuh [Ref. 2] are used to determine
the p, for which q4(p,} € 0 with Re p, > 0. With the addition of de-
generate points this is the region for which the diodes can be embedded
in a passive network Np to obtain a natural frequency at p,. For n
identical diodes it is shown that n = 2 yields all possible natural fre-
quencies. For one or two dicdes Np can be synthesized by previously de-
veloped techniques [Ref. 3}°, and Np can be chosen lossless [Ref. 4].

In the case of two diodes this lossless Np may contain a gyrator.

*On p. 165, Ref. 3, case I, YHS = ) needs modification since bl and b2 are arbitrary
in contrast to the statement made. If bl # 0, the method of case 3, can be used. On
P, 172 another instance occurs in case 4. when q, = 0 with ¢ = 1. This requires
bf = bg. Synthesis results by connecting port 2 to port 1 if by = -by; if by = bs,

connect Yp = gE, g =V 1 + h%. E is the 2x2 skew-symmetric matrix with unit entries.
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II. NATURAL FREQUENCIES

We review here the concepts of "natural frequency” and "active at
Po: " upon which the remainder of the paper is based. However, in order
to cover degeneracies, the definitions are slight extensions of those
previously available. For convenience we will work on the impedance
basis, a situation which is dual to that treated in the literature
[Refs. 2,3]. For the reasons mentioned in the conclusions, we limit the

treatment to p = ¢ + jw with o > 0.
An n-port N, is said to possess a short-circuit natural frequency p,,
. t
Re Po > (0, if some nonzero current of the form i(t) = Re Iepo can flow

into N, when ¥(t) = 0 appears across its terminals, see Fig. 1(a). The
modifier "short circuit" comes from v(t) = 0. Here I is an n-vector of
complex constants and -® < t < ., It should be noted that N, need not
be linear, finite, or time-invariant, and that every p, is a short-
circuit natural frequency for a short circuit. Open-circuit natural
frequencies are defined in an exactly dual manner. For brevity we will
simply refer to either a short-circuit or an open-circuit natural fre-
quency as a natural frequency. If N, is linear and has an impedance
matrix Z,(p), a necessary and sufficient condition for p, in Re p, > 0
to be a short-circuit natural frequency is det Z (p,) = 0 ("det” is

written for determinant).

I

i 1 v=o0| Mo T N

(a})

L--o

!

(b}

FIG. 1. NETWORKS FOR DEFINING "ACTIVE AT Po" WHERE Pg IS A
p.t
SHORT-CIRCUIT NATURAL FREQUENCY IF _i_(t) = Re Ie ® IN (a).

An n-port N is called active at p,, Re p, > 0, if there is a passive
network Np such that the series combination of N and Np has a natural
frequency at p,, see Fig. 1(b) (Ref. 2, p. 418]. Clearly then, if N and
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Np possess impedance matrices Z and Zp which are analytic at p,, a
necessary and sufficient condition for N to be active at p, is

det[Z(p,) + Zp(p,)} = 0.

Assuming that N is a finite {lumped) network possessing an impedance
matrix which is analytic at p,, Desoer and Kuh (Ref. 2, p. 427] have
proven that if N is active at p,, then qu(p,) £ 0, where

, zy(e)T + 12 Tz(p1l  ifw>0
g4(p) = 7 P (1)
I 1=1 e
1" Zy(p)I ifws=0

In this equation, I is again a vector of complex constants; a superscript
tilde represents matrix transposition; a superscript asterisk represents
complex conjugation; Zy is the Hermitian part of Z, i.e., 2Zy = 3‘ + Z;
and | | represents the absolute value. The region @ < 0 need not be
considered since Z‘(p) = ﬂp*} in Re p > 0 is assumed. If Z is not
analytic at p,, N already possesses an open-circuit natural frequency

at p, (under the assumption of a finite N). If a finite N is a one or
two-port, it is known that q+(p°) £ 0 is a sufficient condition for N

to be active at p, (Ref. 3]. This last result is also known to hold for
many n-ports and appears to be valid for all n-ports [Ref. 5%7.

Treating N as a network of uncoupled tunnel diodes, we will apply the
above facts and search for the region in which g4 £ 0, as well as for
the poles of Z.

.The known n-port synthesis is contained on pp. 32-33, Ref. 5. The theory presented
in pp. 1-22 is more readily available in Ref. 3, which contains corrected examples.
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IIT. EQUIVALENT CIRCUITS

The equivalent circuits to be used for a diode biased in the active
region are shown in Fig. 2. In (a) the resistance R is the series re-
sistance of the diode; in practice R << R [Ref. 6] In wany cases the
series lead inductance, mostly due to mounting, is important and (b) then

becomes of interest. For clarity of presentation it is convenient to

(a) {(b)

FIG. 2. ACTUAL EQUIVALENT CIRCUITS.

normalize the circuits of Fig. 2. By impedance scaling and frequency
normalization we can bring both R and C to unity, the process being the
same for both circuits. We then have for the normalized circuits of
Fig. 3

= 1 £ =L - R y)
s RCP. R2C. r R (2)

where s is the actual frequency, and p the normalized frequency. The

impedances for the circuits of Fig. 3 are

) o-1 . {(-a)
z = 1©r 4+ —=—mw=p7*e——————— + J (38)
a p-1 (0-1)24a2 7 (0-1) 24l
= =,Ep+__1_=,&y+;".l___+j|;{a:-——-—-—c-"———] (3]))
: p-1 (0-1) 24?2 (-1) +a?
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(a) (b)

FIG. 3. NORMALIZED EQUIVALENT CIRCUITS.
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1v. SINGLE DIODE N

In this section we will determine the active regions and the cor-

responding passive networks, assuming a single diode.

We first note that the diode is active at p = 1 since it has an open-
circuit natural frequency at that point. Since z, and z}, are analytic

at all other p, we next determine where g4 < 0.

For @ > 0, q4 for a one-port can be written as

4+ = Re z + |Re z|~/ 1+ (In 2/Re 2)® (4)
1 + (w/o)2
if Re z # 0; here z is written place of Z for a one-port. If Re z = 0,
then q4 € 0 requires Im z = 0 also, and in fact q¢ = 0 in this case. If
Re z < 0, then (4) clearly shows that we wish (Im z/re z)2 < (aVa)z for
g+ £ 0. Even if Re z = 0, we have then shown that for @ > 0, q4 £ 0

requires

Re z < 0 (5a)

( Im 2)2 - (« Re 2)2 < 0 (5b)

In other words the region of activity when w > 0, excluding poles, for
a one-port is the region in Re p > 0 for which the two inequalities of
(5) are satisfied. If w = 0, (1) shows that only Re z £ 0 in (5) need

be considered.

Turning our attention to the equivalent circuit of Fig. 3(a) we ses

that Re z_ € 0 occurs where r(a-l)2 + ra? + o-1 < 0 since p # 1 forces

a
a positive denominator. Assuming r > 0 and letting g = 1/r, we see by
completing the square that a necessary and sufficient condition for

Re z, < 0 is
[a-(l-%)]2+a:2_<_542 (6)

This describes the interior of a circle of radius g/2 centered at

o =1« (g/2), @ = 0. Since in practice g > 2 for a tunnel diode, a
typical region described by (6) is shown in Fig. 4. Note that the circle
lies entirely in Re p > 0 if g < 1. For @ = 0 these arguments have shown

that 0 <o £ 1 is in the active region if g > 1.
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FIG. 4. REGION FOR Re z, < 0 WHICH
COINCIDES WITH THE ACTIVE REGION
FOR TWO IDENTICAL DIODES OF FIG. 3(a).

By direct substitution of (3a) into(S5b) with the use of @ > 0, the
second constraint of (5) vields |cg| 5‘02 + (g-2)o + w? + (l-g)‘. The
term inside the absolute value on the right of this is nonpositive,

since Re z, < 0, while that on the left is positive in Re p > 0. We

a
can thus delete the absolute value signs to obtain, after again com-

pleting the square,
[o - (1-9)]2 + &? < g2(1-1) (7)

Equation (7) describes the interior of a circle of radius g/T:; centered
at o = l-g, @ = 0. Ifr >1, there is no active region for w > 0. This
circle intersects the « axis at w; = & /E?T, which is also the inter-
section point for the circle of (6). Since the circle of (7) intersects
the o axis at o; = l-g + gVT?; <1, this circle lies inside the circle
for Re 2z, < 0. Thus, for @ > 0, the active region for a single diode of
Fig. 3(a) is described by (7). Typical regions of activity are then
plotted in Fig. 5. Here the bound on @ should be observed as well as the
fact that the region consists only of a portion of the real axis when

r > 1.

The results for the equivalent circuit of Fig. 3(b) are a little
harder to obtain. As before, we first determine where Re zp < 0. As-
suming € > 0 and setting ¥ = 1/4, (3b) directly shows that the region for
Re zj, £ 0 is described by

(a-l)(c2-o+7) + ow? <0 (8)
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FIG. 5. ACTIVE REGIONS FOR A
SINGLE DIODE OF FIG. 3{a).

Typical regions described by (8) are illustrated in Fig. 6. ¥From the

figure it is seen that given any a,

Re zp,(p,) < 0. For £ > 4 the region consists of two parts whose inter-

there is a o, near ¢ = 0 such that

sections on the o axis are found by using the equality sign in (8) with

w = 0. These are

2’0'.|. =1 + V1-4')’ (98)
% =1 - V1-4y (9b)

For @ = 0, the active region is the union of 0 <o € o_ withoy <o <1
ifd>4 or0<o<1ifd<a4.

In order to find the constraints imposed by (5b) the latter is written
in the form |o Im zbl < |w Re zbl. Since Re zp < 0 is required and
@ > 0 is assumed, this is equivalent to the following two equations
o Imzp - @wRe z 2 0 (10a)

o Imzy + wRe zp <0 {10b)

In conjunction with Re zj < 0 these two equations define the active

region, w > 0, for a single diode. After combining terms, the direct
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FIG. 6. REGIONS FOR Re zp < 0 WHICH
COINCIDE WITH THE ACTIVE REGION FOR

TWO IDENTICAL DIODES OF FIG. 3(b).
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substitution of (3b) into (10a) yields the first of (11), while the

introduction of (3b) into (10b) yields the second. Reecall that y = 1/£.
1 - 2020 {(11a)
95(0-1)2 + 20w - ¥ < 0 (11b)

The intersectinn ol the three regions defineid by (8), {1la), and (1lb)

sives the active region when « > 0. The region defined by (11) always

las ¢ < 1/2 and is in fact contained in that for Re zy < 0. To see

that indeed this is the case, (8) shows that for any ¢ in the region

where Re zp, < 0, w? < (1-0)(c2-0+y)/o. For (11) to hold, w? < [y-20(0-1)%1/20.
Using the maximum allowahle w’'s in each case, called respectively ay

and wy), we see that w% = “%1 = ¥(1-20}/20, which is nonnegative by

{lla). Consequently, the active region for @ > 0, using the circuit of

Fig. 3(b), is completely described hy (il1).

The regions defined v (11) exhibit some interesting properties which
are most apparent for small «'s. For large £ the region consists of two
disconnected subregions. To find the f for which the region splits, we

set @ = 0. We then define f(o) by
f(o) = 20(c-1)2 <y (12)

Now [df{o)/do] = 6 (02 - % a +-%) = 0 occurs at o = %, 1. Thus, the
extrema of f(o) in the region of interest, 0 <o < 1/2, occur at o = 1/3,
1/2. At o = 1/3, (12) shows that 4 < 27/8; while for o = 1/2, 4 < 4.
Consequently, for £ < 27/8 there is one region; for (27/8) < £ < 4, the
region splits; while for £ > 4, the right-liand region vanishes. This
behavior is illustrated by the examples of the typical active regions for
zp, given in Fig. 7. It should be observed that a calculation of the
point of intersection of the curve for @w > 0 with the ¢ axis, when

£ > 27/8, requires solving the cubic equation of (12) with the equal sign.

The case € = 0, which is identical to r = 0, is a limiting case of
the above theory. The region is 0 <o £1/2 if @ >0, or 0 <o <1 if
w = 0, which agrees with the results of previous workers [Ref. 1 and

Fig. 6, p. 433, Ref. 2]. This region is also cataloged in Figs. 6 and 7.

Passive networks Np to yield the natural frequencies in the active

region are easily obtained. At p, = 1 there is already an open-circuit
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natural frequency and no additional passive network is required. 1In

the remainder of the active region we can write

z2{p,) = a *+ jA (13)

As can be checked by direct calculation, a possible impedance for the

passive network is given by [Ref. 3, p. 164]

(p) = 4p p + -1 (14a)
Iptip PP cpp a
ip = % [(-afoy) - (Blwg)) (14b)
ep = 2[{(-a/oy) + (B/wy)} (02 + w2)1"1  (14c)

In this if w, = 0, then S = 0, and we replace B/e, by zero. &p and cp
will always be nonnegative [Ref. 3], but cp may be infinite if z(p,) = 0,
in which case zP(p) = 0. The lossless passive network is shown in Fig. 8.

For example, for z, we have

2pa = [1-r(0,-1)% - ral]/{o,[(0,-1)2 + 2]}

cpa = 20,[(0,-1)2 + 21/{(02 + w?)[1-20,-r(0,-1)? - rwll}

FIG. 8. LOSSLESS Np FOR A SINGLE
DIODE.

Since it may be desirable to use other than lossless networks for
Np, several other passive networks are presented. For z, it is always
possible to find an R-L series network. This 1s 1llustrated by ¥Fig. 9
where the element values, which are nonnegative, are given. For z, an
R-C series circuit can be given to cover part of the active region, while
an R-L series circuit will cover the remaining portion. Suitable circuits
with their element values are given in Fig. 10. All of these circuits

can be checked by direct evaluation to see that zp(p,) = -(a + iB).
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However, systematic procedures are available in the literature for ob-
taining verious passive networks [Ref. 4].

: ra-= {1-200-r [(og- 102421}/ {{og=1)2+ef)

ta By = 1/{(og-1)24w?}

FIG. 9. R-L Np FOR CIRCUIT OF FIG. 3(a).

§ Tbe rpe = {1-24o,[{o -1 )2+w§] H(og-1 )2+c.%]
o—02

Cp
cp = [log-112+2)/{(o2+ad) [4{(0g-1)2+ad} - 1]}
(a)
rpd, rof = (l-Zcro)l[(ao-l)2+wg]
Ly Ly = {1-0 [{og1)2+a2]} [(oo=1)24c?]

FIG. 10. R-C AND R-L Np FOR CIRCUIT OF FIG. 3(b).
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V. MULTIPLE DIODE N

In general, larger regions can be obtained by using more than one
diode, We first consider two identical uncoupled diodes. In this case

the impedance matrix is diagonal with identical entries,

Z(p) = z(p) [1 o] (15)
01

For @ = 0, Im z = 0 and q; = Re z. Consequently, the active region on

the ¢ axis is identical to that obtained for a single diode. Connecting
the passive network obtained for a single diode to port one while ignoring
port two yields a natural frequency. Clearly the second diode adds

nothing when @ = 0.

- When @ > 0, we again have gy = Re z, since in (1) we can obtain
|IZI| = 0 by choosing I% = -I%. In this case the regions of activity are
larger than those for the single diode. They have already been exhibited
in Figs. 4 and 6, since they coincide with the regions for Re z < 0,

For @ > 0 a passive network can consist of one resistor and a gyrator

[Ref. 3, p. 166" ] with

Zp(p) = -2 Re z(p,) [1 0] + V/[Re Z(po)]2 + [Im z(po)]2 [ 0 1] (16)
00 -1 0

As can easily be checked, det {[Z{p ) + Zp(po)] = 0 and a short-circuit
natural frequency occurs as required. If it is desired to obtain a loss-
less passive network, the resistor can be replaced by substituting the

following expression for Re z2(p,) in (16)

2 4 o2
£ 2lro) [p +Z0 "% ] (17)
20, p

With this result the network to obtain an w > 0 natural frequency is
shown in Fig. 11. Unfortunately, the known passive networks require a

gyrator,

*An alternate results from Zp(p) = -Re z(p,}1g + Im z(p,)E, where 1o is the 2x2 unit
matrix and E is the 2x2 skew-symmetric matrix with unit entries. This alternate
uses two resistors or four reactive elements.
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ty <
It -
g - * 'ﬂo = -Re z(p,)/o,
h | O
i 9, cq = ooHI-Re z(py)]
o o- o2 +a21}
i *: o "o
9o =/ TRe 2(pg )12+ [1m 2(p,))2
Np N

FIG. 11. REALIZATION OF A NATURAL FREQUENCY AT p,
WHEN Re z(p_) < 0, USING TWO DIODES AND A
LOSSLESS Np.

From the above discussion it should be clear that there is no peint
in using more than two identical diodes. This is true because we can’t
hope to have a region larger than that for Re z < 0; this latter is
covered by using two diodes. Thus, if more than two identical diodes

are present, we would ignore the extra diodes.

For two nonidentical diodes some 20 separate cases can occur. For
any individual case the methods of a previous paper can be used to find
the passive network, if q4 < 0 [Ref. 3]. Using the methods of another
reference, the passive network can be guaranteed lossless [Ref. 4]. Note
that only one of the diodes can be normalized as in Fig. 3. For more
than two nonidentical diodes it appears that ignoring all bhut the "best”
two dicdes gives the best results. However, the constraints, in general,
upon an n x n Z matrix to yield q4 < 0 are still unknown [Ref. 5]. Thus,
this case remains unsolved. We can state, though, that the active region

is at least as large as the active region of any one diode.
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VI. CONCLUSION AND COMMENTS

Using linearized equivalent circuits which contain parasitic elements,
we have determined the natural frequencies that can be obtained from
tunnel diodes. For a single diode the results are summarized in Figs.

5 and 7; for two or more identical diodes they are summarized in Figs.

4 and 6. To obtain these results we have limited the treatment to the
right half plane, Re p > 0. In Re p > 0 it is possible to define a
natural frequency in a generalized way by using excitations beginning

at t=-o, This procedure actually allows us to extend (1) to distributed
parameter networks. Unfortunately, this definition of a natural frequency

seems to be inconvenient for Re p < 0.

In any event we can extend the results to Re p = 0 for the finite
cases we treated by noting where qu(jw) € 0. This can be seen directly
from the curves presented, and shows which short-circuit natural fre-
quencies can be obtained on p = jw. Including Re p = 0 in the main
theory of the report requires that certain distinctions be made which
interrupt the important concepts. This situation arises because any
open-circuit natural frequency can be obtained on the jw axis by using
the proper lossless passive network. The passive networks to obtain
Jjw-axis-short circuit natural frequencies generally require resistance

and can be obtained easily from Ref. 3.

Comparing the curves for the circuit with series resistance against
those with series inductance shows that the resistance is what limits
high-frequency oscillations. A truer representation of actual diode
operation would result from incorporating series resistance and inductance
simultaneously. One soon gives up such an attempt, since the mathematical
analysis, for the general case, becomes intractable. However, the general
results of such a treatment can be inferred from the curves presented,
With both types of parasitics, the regions could at best be the inter-

sections of the regions obtained in this paper.

We have presented two types of passive networks in Figs. 8 through
11. Lossless networks are theoretically attractive, but the circuits
incorporating resistors seem to be practically more feasible. However,
Ry of the diode can be used to absorb some of the loss of nonideal loss-
less networks. The use of two diodes is theoretically appealing since
the largest regions are obtained. But this is counterbalanced by the

need for a gyrator coupling element. In some cases it may be desirable
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to transfer the inductance of Fig. 1] through the gyrator by turning it

into a capacitor using well-known equivalences.

In treating multiple-diode networks, we have looked at the case where
the diodes are uncoupled. If the diodes are somehow connected together
the regions of activity can only decrease, since the coupling can be

looked upon as a constraint placed on Np.

The results of this report illustrate the various kinds of regions
in which a network can be active at p,. Of special interest is the
splitting of the regions that occurs in Fig. 7. A contribution of the
report is the method of circumventing the singularities of Z, a problem

essentially ignored in Ref. 2.
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