State-Space Techniques
With Applications to Integrated Circuits¥
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Abstract: The generality of state-variable theory allows the development
of synthesis techniques of particular interest to linear integrated
circuits, This paper reviews presently available state-variable
results while discussing several extensions. Included are time-
variable, lumped-distributed, and passive techniques with reference

to the use of integrated operational amplifiers and gyrators,

"My grandmother read me a tale about a mermaid who had acquired a

pair of feet." [1, p. 116]

I. Introduction

As becomes more and more apparent with time the theory of linear
integrated circuits, and with it the more general theory of micro-
systems, is bound to have a rather profound effect upon the capabili-
ties of mankind. For example, more convenient biological monitors
and transducers, such as hearing aids and timing pieces, are already
under consideration, However, because of the precision required and
the detailed nature of the processing, one can not progress effectively

with cut-and-try methods. What is needed is a set of solid relevant

*Text prepared for the "Summer Seminar on Modern Trends and Methods in

Network Theory,” Technion, Haifa, August 20, 1968, 11:00-13:00 hours.

tDepartment of Electrical Engineering, Stanford University, Stanford,

California 94305,

[1]



1.

theories, 1In our view the theory of state-variables, which is well
developed from system and control applications, offers the most
promise for significant advancement. Here we outline some of the
results available for immediate use as well as some of those having
implication for the future,

To be sure the most accurate methods of designing integrated
circuits would be to take into detailed account the total material
properties of the media, for example the effects of diffusion gradiants
in monolithic structures. Unfortunately such theories are either
unavailable or too difficult to apply except in the simplest of design
situations. Consequently it appears best to set up macroscopic designs
on a rigorous hasis, as we outline here, and then apply computer aided
analysis techniques to incorporate material properties in preliminary
evaluations. 8Since state-variable theory can be applied at all of
these stages, the state and its properties seem most appropriate for
study within the integrated circuit framework.

The material can be outlined as follows, In section II we review
some of the mathematics associated with state-variables as well as some
of the circuit components available in integrated form. In section III
mathematical realization techniques are discussed while in section IV
these results are used for synthesis. A technique being used for
commercially available integrated filters is discussed in section V
where low sensitivity degree two realizations are investigated. In

most places the treatment is summary and tutorial with details being

adequately developed elsewhere, although in several instances new results

are incorporated.

"The inquisitive breeze would join in the reading and roughly finger
the pages so as to discover what was going to happen next, That is

about all I remember of the voyage." [1, p. 116]

Preliminaries
A, Mathematical
As background we recall the basic details of state-variable

theory needed for the development, A thorough treatment can be found

(2]



in [2] while [3] gives the state-variable position within linear
network theory from which much of the following is justified.
We begin by realizing that almost any finite linear circuit can

be described by the canonical state-variable equations

(1)

A(DX(t) + B(Hu(t) (2.1a)

FE) = C(DX(E) + DOt (2.1b)

Where u is the input n—vector,‘l is the output m-vector and the state
k-vector x represents the internal behavior of the system; the set of
matrices R = (A, B, C, D] is called a realization and is assumed
independent of the input, output, and state, for linearity. If the
realization matrices (which are assumed real) are constant in time t
then the sgystem is time-invariant; conversely, given a time-invariant
system having a canaonical state-variable representation, there exists
a constant realization R to describe it.

Of particular interest to us will be the fact that the canonical
state-variable equations have the block diagram representation of
Fig. 2.1 where all of the dynamics is seen to be taken up by the k
uncoupled integrators denoted through the kxk identity matrix‘;k.

For specification purposes a linear system is most often described

in terms of its mxn impulse response matrix h(t,t}; more precisely

o
y(® =f h(t,)u(r) dr (2.2)
=y
where the integral rigorously denotes a scalar product between the
distributional kernel h and input u [4, p, 143]. If we define the
fundamental matrix $(t,t) for Eq.(2.1) through

dd(t,T)

T = A(DB(E, T O(E,t) = 1 (2.3)

=k
then all of the above equations yield
h(t,1) = D()B(t-1) + C(t)P(t,TIB(TI1(t-T) (2.4)

In this expression 1(.) is the unit step function with &(.) its derivative,
the unit impulse. When the realization is constant, time-invariance obtains

in which case h(t,t) = h(t-7,0) and 0(t,T) = exp [ﬁ(t-T):; on taking Laplace
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transforms we find the transfer-function mxn matrix‘g(p),
-1
H(p) = #£[h(t,0)]=D + C[pl,-A] "B (2.5

where p = ¢ + jw is the complex frequency variable, Note that H(p) is

rational with real coefficients, called real-rational, and finite at

p = =,

Given any one realization RO of the canonical state-variable equations
one can find any other realization R having the same impulse response
matrix h by the use of transformations on the state and canoniecal equations
{5, p. 536][6, p. 373]; R and R are naturally called equivalent realiza-
tions. In particular if A and ﬂo both are of minimal size 5, k = ko =&,
in which case R and Ro are called minimal realizations, there exists a

nonsingular transformation T(t) on the state, x, = Tx, such that

A=TAaT-T % B=1"'B,

— e -

C=CT, D=0D (2.6)
Loy “0

- —Q=

If T is a constant matrix, as for the time-invariant situation, then A
and éo are related by similarity. It is worth commenting that this minimal
state dimension & is called the degree; since the fundamental matrix has
the transition property Q(t,T) =-Q(t’to)g(to’7) for any to’ the impulse

response is separable, that is it can be written with
COB(t,B(T) = ¥(£) (%) (2.7

in which case §© is the smallest number of linearly independent columns in
¥. Alternatively, the degree © can be calculated directly from the transfer

—

function'E!p) in the time-invariant case [7].

B. Integrated Circuits
In developing theoretical results for physical entities it is
important to observe the nature of the physical constructs available.
This is particularly true for integrated circuits for which we here
briefly review several devices and their characteristics,
For integrated circuits, by which we will mean monolithic or thin
Tilm or their hybrid combination, we will consider the prime elements

availahle to be moneclithic resistors & bipolar transistors and thin film
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type capacitors, MOS transistors & precision resistors. For conciseness
of treatment we will generally limit ourselves to the first three
mentioned components while realizing that of these the capacitors cause
the most difficulty in fabrication. For this reason, and availability
of limited (chip) construction space, we desire to minimize the total
number of capacitors as well as keep a common ground, if possible, for
all capacitors present. There are of course other prime elements, as
the monolithie FET, and one of these, the distributed RC line will
briefly be used later.

It is certainly possible to consider all circuits viewed as a
connection of prime elements, but we know from experience that for
design purposes it is more convenient to introduce additional building
blocks, called generating elements, constructed from the primes. The
several synthesis methods to be discussed will depend upon the availabil-
ity of three specific generating elements, the differential voltage-to-
current converter (DVCCS), the gyrator, and the differential voltage
controlled voltage source (DVCVS), often of infinite gain (operational
amplifier)., For example the DVCCS allows direct admittance matrix
synthesis while it is also key for the construction of the gyrator; any
finite circuit can be constructed from DVCCS's and capacitors [8], The
gyrator yields passive syntheses, generally having low sensitivities,
while operational amplifiers almost directly allow implementation of
Fig. 2.1. Again there are other generating elements, such as the NIC,
but the above, all of which have been integrated, suffice for our
purposes,

For integration all of the generating elements should be direct
coupled with differential source inputs for symmetry and convenience
of use, Commercial usage often necessitates rather complex circuitry,
but here we exhibit some simple circuits to illustrate the basic
concepts., Also, since we are generally interested in the time-variable
or adjustable, situation we will incorporate a means of time-variation,

Figure 2,2 shows a simple scheme for obtaining a DVCCS; a differ-
ential voltage amplifier is cascaded with a voltage to current converter
which is fed by a constant current source for hias purposes. The

transconductance of the device depends directly upon the bias voltage
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Vb and, hence, can be readily varied electronically, The use a pnp
transistor presently necessitates a lateral transistor [9], but,
except for this, the device is easily integrated with acceptable
performance presently available into the mid-KHz region.

Ideally the DVCCS has infinite input and output impedances,
Consequently, the back-to-back connection of Fig. 2.3a) yields the

admittance matrix

0 G (2.8)
-G O

Yrd
]

of the grounded gyrator symbolized in Fig. 2,3b)., By this technique the
gyrator has been integrated [10] while Fig, 2.3c) shows a means for
obtaining a floating (input) port. Since it is difficult to time-vary

the gyration conductance G through zero, Fig. 2.3d) shows a scheme for

changing sign [J. Woodard]. The presently integrated gyrator has
reasonazble quality again into the high KH=z range, but commercially
explored circuits using thin film techniques indicate extremely high
quality availability [11][12], We would comment that most often in
practice ylz # -y21 in which case the gyrator loses its passive property.
Also in practice the high frequency performance is primarily limited by
the phase shift present in G, G = G0 exp(-pT) [13, p. 27].

The final generating element to be mentioned is the DVCVS shown in
Fig. 2.4a) where a unity gain emitter follower is used to provide isolation

of the amplifying portion; a zener diode, T,k with Vé = 6,5v, is used to

4
provide a zero level dc output voltage (at the expense of noise which can

be aveided by more elaborate level shifters). Again the amount of time-
variation, provided by a variable Vb,
be extended by the feedback arrangement of Fig. 2,4d) where the infinite

is limited. The variable range can

gain device can be approximatedby the cascade of several finite gain
amplifiers. To point out an interrelation between the various generating
elements the equivalence of Fig, 2.4c) is worth noting. Although the
circuit of Fig., 2.4a) is relatively easily integrated it is of more
significance to realize the ready commercial availability of operational
amplifiers, 1Ideally the device has infinite input impedances and zero

output impedance, but parasitic effects again limit the frequencies of
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operation to below the hundreds of KHz.

The importance of the gyrator for integrated circuits lies in the
fact that it can convert capacitors into equivalent inductors, as
illustrated in Fig, 2.5a}); for example an integrated gyrator with
G = 3.33x10"4u loaded in a 100 pf capacitor yields a 1 mhy inductor.
The interest in the DVCVS primarily lies in their use for construction
of integrators and summers as shown in Fig. 2.5b),c); note that multiple
inputsummers are desired to handle the matrix operations of Eq. (2.1).
The gain expressions for the integrator and summer are respectively

m, m

2 RG + 1 _+ + S
Yo “ﬁ"i’ Yo = E : T+ G.Ziv.j - Z RG-jvj el
. G :
i=1 j=1

where G+(or G ) is the sum, j = (o neas m+(or m_ ), of the input conduct-
ances Gj = l/Rj. Note that to time vary one of the sum coefficients, as
may be needed for A(t), say, it is easiest to insert a variable gain
amplifier [Fig. 2.,4a)] before the summer resistor while keeping the
summer time-invariant,

It is worth mentioning that in monolithic form resistor ratios but
not absolute values are relatively easy to control with most convenient
values in the range 100-50,000 ). Thin film resistors yield higher values
with higher precision. Integrated capacitor values depend of course upon
the area used but reasonable values lie in the 10-1,000 pf range, Dis-
tributed losses play a large role in limiting device operation, but in
some cases the distributed effects can be used to advantage for cutting
down size and extending the useable frequency range [14].

At this point it may be valuable to exhibit photomicrographs of
the above mentioned generating elements, Thus actual integrated layouts
are illustrated in Fig. 2.6 where part a) gives the DVCCS of Fig, 2.3a)
[J. Miller, Stanford Integrated Circuits Laboratory], part b) the DVCVS
of Fig, 2.4a) [University of California, Berkeley, Integrated Circuits
Laboratory], and part c¢) a gyrator [10]

With these thoughts and results in mind we can turn to concepts

directly related to synthesis,



ITI. State Realizations
Here we discuss means of setting up the canonical state-variable
equations, Of particular interest is that of finding a minimal realiza-
tion from a given transfer function or from a given impulse response

which we know must be of the form
E(t,T) =£L(t)5(t—1) +‘g(t)§(7)1(t-1) (3.1)

where all matrices are real valued. Assuming matrices A, ¥, and @ of

infinitely differentiable functions, for convenience, we will call h a
separable kernel of order zero this latter denoting the distributional
order of the kernel {15, p. 133] (that is, no B(j), j > 0 are present),

Since &(t,7) = 1 when A is the zero matrix, A = 0 , we can immedi-

k “k
ately obtain the realization, on comparing Egqs. (3.1) and (2.4),
‘&=“9k’ ‘B_= 9’ 2:!, 2:& (3.2)

which is minimal if the columns of‘g have been made linearly independent.
Any other minimal realization can be obtained by the use of Eq. (2.6):

in fact, if T is chosen as a Lyapunov transformation [16, p, 117] (essen-
tially, bounded and of bounded derivative and inverse) then the stability
properties are preserved. Although not directly applicable to the reali-
zation of Eq. (3.2) it is of special interest to know that if an initial
realization Ro has 30 = 5050 exponentially asymptotically stable, then
given any positive definite (symmetric) Qﬁt) there exists a (symmetric)

positive definite P(t) such that [17, p. 95] (the tilde denotes matrix

transposition)

P+AR s A, = -9 (3.32)

o}

If one then chooses for the transformation on the state the unique positive definite
o
square root of the inverse of P, T=2? 2, then on using Eq. (2.8) in

(3.3a) one finds

A+A=-TqT (3.3b)

That is, in this case the symmetric part of A becomes negative definite

(for all time),

—
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Turning to the time invariant case, we see that the realization
of Egs. (3.2) will in general be time-varying, Thus we actually prefer
to proceed through the transfer function from which Eq. (2.5) yields

on expansion about infinity

o i

H(p) =D +§ * ¢ -2 B—E & (3.48)
AP =2 E = T, T .

i=0 i=-1

The right hand side of this expression defines the Ai which can then be
assumed as given and from which we wish to find a minimal constant
realization. The process is relatively difficult to justify [18, p. 13]
[3, p. 63] but a construction can proceed as follows. From the least

common denominator g(p) = pr + alpr + ... + ar of elements of the mxn

_I:I_(p) we form the rmxrm generalized companion matrix {l, and from the 'Ai

of Eq. (3.4a) we form the rmxrn generalized Hankel matrix §_r; precisely

Q=1 1 1, s =[a A A | 3.4p)
- ~m T Sr T I *o =1 " Fr-l 3.
1 0
m él _&2 cee AL
o o .,
1 . . 5
“m
ﬂarlm -ar-l'l‘m T —al‘l'm ﬂr—l "&r e 'éZr-z
- L .

Letting & be the rank of '§r’ which is also the degree of H, and

introducing ;L“Ot to denote the axp matrix whose first ¢ columns are

»P

__ILa and whose last B-0 columns are zero, we find matrices M and N to

diagonalize *§r; thus

= - 3.
L"rﬂ ']‘B,rn l&,rm I
A minimal realization is then given by
} _ N 5
A '1'6 r rmMQgrElES ,rn’ B '15 : rmmgrln , TN (3.52)
= L = .5
£ ‘];m; mgrglﬁ,rn’ D = A=) Sl

For example, one can check that *{Li = 9&1‘13_'_ to see that a realization is

obtained.

Of course Egs. (3.3) remain valid in the time-invariant case where
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a constant 2 can relatively easily be determined by solving the linear
algebraic equations of (3.3). However, it is also true that {19, p. 83]
t
P =f (t-7,0)Qd(t~1,0)d7 (3.6)

-

which clearly indicates the positive definite property oftg_with‘g.
ITf the given matrix H(p) is a positive-real admittance matrix
[20, p. 96] then it will be of interest to form an auxiliary admittance

matrix (from a particular realization)

=1D cl = D CT (3.7)
. 2 = 2 ok
-B  -A -T"lB T_l’i‘-T-lA T
ELIN T LA - O VR A T

By a proper choice of the indicated T, any initial constant realization
R can be brought [by the use of Eq. (2.6)] to yield a positive-real

Zc' Again the details are rather complicated [21], but the process can
be described as follows. One forms and factors (the para-Hermitian part

of E)
H(p) + H(-p) = ¥(-p)¥(p) (3.8)

to obtain W, which is assumed to be the unique factor (to within ortho-
gonal multiplierg) which is holomorphic together with its right inverse
in Re p > 0 [22][23, p, 1753]. A minimal realization is found for W
which is of the form éo"Bo’ L, W(=) where:&o and §0 are those for
H itself. This L is used to define @ = LL, the resulting P for Eq. (3.3a)
found, and T =_B-% chosen. Equation (3.3b) can then be used, with
B = é—f@ﬁ(m), to show that the symmetric part of‘Xc is positive senmi-
definite and, hence, that Xc is PR. 1In view of the fact that Eqs. (3.3)
hold in the time-varying case, almost identical results hold to show
that a suitable passive admittance impulse response matrix has a passive
Y (t) [24].

To this point we have discussed finding a state-space realization
when the impulse response or transfer function is given. The results
on hand, then, are appropriate for synthesis, However, for integrated

clrcuits it is imperative to have a complete analysis of a complicated
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design available, including all known parasitic effects, before actual
construction is undertaken, For this, analysis via the computer
using state-space methods and appropriate equivalent circuit models is
of considerable assistance, By use of the capacitor-loaded-gyrator
inductor equivalent of Fig. 2.5a), as well as a capacitance scaling
through cascade gyrator transformer equivalents, all dynamical
elements can be removed as unit capacitors., Between inputs, outputs,
and unit capacitors (which serve to define the state) there exists a
(resistive) network which is relatively easily characterized since it
is described by algebraic relationships.

For example if an admittance impulse response is under consideration,
the structure of Fig. 3,1la) results where the (n+k)-port resistive net-

work is described by its coupling admittance Xi(t) = [yij]; noting that

u=y, y =1, Yo T 5 .j:c = -X gives [25]
= = 3.
Lo 1317 B Tz |2 e (5
o ar oz ||X Es

from which the canonical equations are readily read off yielding
R={-Y501 ¥p1s ¥y, Yool =1{A, B, &, D}. Note that this realization
Justifies Eq. (3.7). But on the computer Xc is readily found via
reduction of the indefinite admittance matrix or through topological
means [3, p. 35]. If the impulse response is of the transfer voltage
type, Fig, 3.1b) results and one can proceed by setting up the hybrid

matrix Ec = [Eij] for the resistive coupling structure

= = 0 =11 3.
rl:'['c 1 “}'Ic = = -1 S0
i 0
2 - kA <2
Ya X £ 23

from which again the state-variable realizationh is read off as

R = {-933, _ESI’JBZB’ 221} - To set up H one can adjoin unit gyrators
at the second set of ports and again find the coupling admittance, which
is numeriecally equal to'gc, by reducing the easily established indefinite

admittance. Almost identical results hold if nonlinear capacitors are

[11]



IV,

present by choosing the charge q for the state [26],

In summary to this point, given either a circuit, an impulse
response, or a transfer function, the methods of this section apply to
allow one to obtain a state-space realization if one exists, In partic-
ular, a minimal realization results from either h(t,T) or H(p), while
several transformations which preserve stability properties have been
discussed for passive synthesis purposes. Given a circuit, a simple
and computer oriented analysis exists for setting up the canonical
equations., With these results now at our disposal we can next go to

actual synthesis.

Synthesis Techniques

Using the results developed above we next obtain synthesis methods
based upon the state, The first uses classical analog computer
simulations while the final one employs gyrators for a completely passive
synthesis, All methods employ, in the first instance, a minimum number
6f capacitors all of which can be assumed grounded and equal,

Throughout this section we will assume that an myn, separable,
order zero, impulse response Qﬁt,T) or real-rational transfer function
gﬁp), EKW) finite, is given with a desire for a finite circuit realization

in a2 form suitable for integration.

A, Block Diagram Synthesis

From Eqs. (3.2) or (3.5) we can obtain a minimal state-space
realization R = {é, B, C, g_}. The block diagram of Fig. 2.1 is then
implemented by the use of the integrator and summer of Fig. 2.5 where
variable gain amplifiers [Fig. 2.4] are cascaded with the latter if the
realization is time-dependent. The method is most appropriate for voltage-
to-voltage transfer since then the use of terminating converters is
avoided.

Although this technique is easily described, it is extremely practical
especially in the secalar case (m=n=1) where low sensitivity results occur
by factoring H(p) to yield a cascade of degree one or two sections [27].
These degree two structures will be described in more detail in the next

section, But we point out that synthesis of a lxllﬁ(p) by synthesizing
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low degree factors has several advantages besides that of sensitivity
over a direct synthesis of Eﬂp); for example each section can be

separately frequency scaled to assist in obtazining reasonable element
values while also practical stability properties are improved by the

avoidance of multiple loop feedback paths.

B. Admittance Synthesis
If the given impulse response or transfer function matrix

is an nxn admittance it is most convenient to form the coupling
admittance Xc of Eq. (3,7) from a minimal state-space realization,
A circuit results from a synthesis of the (m+d) X (n+d) coupling
followed by capacitive termination at the & final ports, as shown in
Fig. 3.1.

A synthesis of Xc = Yij result in several ways. One method is
to realize each scalar 3erj by a DVCCS of transconductance yij connecting
port i to port j; this allows all ports and, hence, all capacitors to be
grounded., An alternate method of realization is to decomposely_c into

its symmetric and skew-symmetriec parts

= 4.1
Xc Zcsy * Xcsk ( &
zxcsy =X+t X Yesk = ¥ SRy

The skew-symmetric part can be immediately realized as a parallel
connection of gyrators while the symmetric part can be diagonalized to

(+ denotes the direct sum)[28, p, 298]

Yogy = G141 08, (4.22)

Here p = 0 if Yc is positive real while‘gcsy is realized by loading a

gyrator network, of admittance matrix

.=[o s (4.2b)
-G 0
- n—

in r positive and p negative unit resistors, as shown in Fig, 4.1a).
A negative resistor can be obtained from a DVCCS as shown in Fig. 4.1b);

note that it and all the capacitors and gyrators can occur with a common

[13]



ground. We also see that if a given‘Eﬁp) is positive real then the
transformations on the state mentioned after Eq, (3,8) allow a
completely passive synthesis by this alternate method of synthesis of
¥, [in contrast to the synthesis using the active DVCCS]. Of course
our use of state-variable realization theory has limited us to those
g(p) which are finite at infinity, that is, which have no pole at
infinity. More general rational positive real admittances can be
synthesized by extracting the pole at infinity as a parallel capacitor

network and applying this state-space technique to the remainder.

C. Passive Transfer Synthesis
Let us assume that the given mxn impulse response or transfer
function is for voltage inputs at one set of ports, u = Hl’ to (short-
circuit) current outputs at another set of ports,-z = 12. We will then
be able to obtain a passive realization as follows [29],
From a minimal realization, transformed to have the symmetric part
of’& negative definite [Eq. (3.3b)], we set up the canonical state

variable equations which are identical to

i=ax+ (8 Gy, (4.33)
L2
1 |=[Bf+|e-2 ¥, (4.3b)
i, < D O}ly,
when Yy, = 0 is chosen and ;1 is ignored., But in this augmented form
the augmented input E% = [fl, fz] and output ¥* = [il’ iz] define an

admittance description. We can then form the coupling admittance,

analogous to Eq. (3.7) but with the augmented matrices,

(4.9)

0o 1o

Synthesis of XC then follows in a passive manner using the method described
at Eq. (4.1) & (4.2), since this realization satisfying Egq. (3.3b) guar-
antees that XCsy =0 %[fg@] is positive semidefinite (in fact of rank o).

~n+m
Fig. 4.2 gives the final circuit where the constraint 32 = 0 is readily

[14]



seen to hold because of the output short circuit; the gyrators are seen
to absorb any time variations, if present, while the matrix multiport
symbolism should be clear, Actually, by the use of appropriate equiva-
lences the dissipation can be moved to the external ports if so desired
(time-variable terminating resistors may be needed as a consequence,
however) .

If a synthesis of voltage to (open-circuit) voltage response is
desired, then n open-circuited gyrators can be used to replace the out-
put short circuits shown in Fig, 4.2, allowing the original synthesis
to really be that of wvoltage to current as just described (recall that
a gyrator transforms a load into its dual, hence an open circuit into a
short circuit),

In summary our results allow any separable kernel of order zero
having an exponentially asymptotically stable realization to be synthe-
sized by a passive circuit using a minimim number of capacitors all of

which are grounded and identical,

D. Lumped-Distributed Synthesis
In closing this section we briefly mention some extensions to
circuits containing RC transmission lines,
If one analyzes the circuit of Fig. 4.3 he finds [30, p. 152]

v

-‘;g(p) = —-1—-—— = }P—; P = cosh vpRC (4.5)
1 cosh v pRC

Consequently, the uniformly distributed RC line acts as an integrator in
the P plane (the unity gain amplifier is for isolation). A P-plane
transfer function H(P) can then be synthesized by using Fig, 2.1 with p
replaced by P and a state-space realization for H(P) = D +-g[21k_£]-{§;
of course the lumped resistor summer of Fig. 2,5 would be used, giving
a lumped-distributed synthesis, Suitable H(P) can be obtained from
p-plane data using appropriate approximations [31, p. 137],.

Using the changes of variables A =Vp and s = ctnh \/;Eaz an admittance
matrix.z(p) describing a passive reciprocal lumped-distributed RC network
can be synthesized by appropriate substitutions to obtain a rational two-
variable admittance Ejs,h) = Y(p)}/vp ; from the two-variable admittance,

which is positive-real if Xﬁp) is, a state-variable type of realization

[15]



is formed to yield

H(s,)\) = D(N) +g(x)[slas-§(k)j_1§(h) (4.5)

The "realization” can be found using results similar to Eqs. (3.5)[32]
[33], while a synthesis follows on forming an admittance matrix‘XC(A),
as in Eq. (3.7), subject to appropriate transformation; the resultant
coupling admittance is synthesized by lumped resistors, capacitors, and
gyrator formed transformers, whileiz(p) results by loading in open or

short circuited transmission lines [34],

Degree Two Realizations

Because sensitivity to circuit element changes is often smallest
{35], many practical scalar transfer functions are synthesized as the
cascade of degree one or two sections, Here we outline how some of the

above ideas apply to such situations,

A, Operational Amplifier Configuration
Let us consider the synthesis of the low-pass voltage transfer
function
1

H(p) = —5 5 (5.1a)
P +2§wnp+wn

(we have dropped boldfacedness to indicate the scalar nature of H).

To formulate a minimal state-variable realization through Egs. (3.5) we

need to make an expansion about infinity

1 28wy
H(p)=—2‘—'— 3 +...—'—2-—+—-3-+.. (5.1h)
p P 3 p
We have 8§ = r = 2, m=n = 1, thus
= 5
5, 0 1 (5.2)
-2Cw 1 -2fw
>n
With lb,rm =-;6,rn 1, and 1 m, =-ln,rn = [1,0] we find directly from
Eqs. (3.5)
2
_{\_.=0-—wn » B=|1}, €=1[0,1], D=0 (5.3)
1 -20w o



Using hopefully self-explanatory notation, the appropriate inter-
pretation is given in Fig. 5,1 of the state-variable block diagram of
Fig. 2.1,

It turns out that the sensitivity of such structures to component
changes is relatively low [27]{36]. For example, if K is the gain of

the lower integrator of Fig. 5.1 we can calculate the sensitivity

H(p) _ _K OH(p)
S T W) 9K (5.4)

as follows. An analysis of the integrator of Fig. 2.5b) shows that for

finite gain K in the DVCVS we have as the integrator transfer function

2K

Hi(p) = RpC{K + 2) + 4 (5.5
Replacing the p in the (2,2) term of plz—ﬁ_by p(1 + [2/K]+ [2/K],
assuming RC = 2, gives the actual dependence of H(p) on K; thus
2 -1
H(p) = [0 1}]| p wn 1 (5.52)
2
-1 pQ +%+E+2§mn 0
1
) 2(1 + 2) + (2 + 28w )p + m2 (250
P K K mn . n
Application of Eq. (5.4) gives the sensitivity
2
S]}:(p) _ p(p + 1) (5.62)

2, 2 2 2
K[l + i{—)p + ('ﬁ + 2§wn)p + wn]

which approaches zero for all p as K becomes infinite as desired. Thus

H(p) _
1lim SK =

Ky

o (5.6b)

In other words, the differential effects of mask misalignment or errant
diffusion with regard to the amplifier tend to become unimportant if the
gain is sufficiently high. Similar results hold for the quality factor
and undamped natural frequency {eg., S;n = 2K/[K(K + 2)]}, while
gsensitivities with respect to passive elements are also relatively small.

A point of considerable practical interest ig that Q = 1/2{ is very

[17]



easily adjusted in Fig. 5.1 since it enters in only one multiplier; Q
can be adjusted for example by the insertion of one variable gain
amplifier of the type of Fip. 2.4 {in cascade with the bottom multiplier
in Fig. 5.1],. Further, by generalizing these results to

a3p2 + P +Q
H(p) = 3 (5.7)

2
p o+ 2§mnp +w

one circuit can be obtained with pickoff points to give low-pass, band-
pass, and high-pass responses with adjustable Q and w and low sensitiv-
ities [27], Such a device has been completely integrated using MOS
devices and is available on the commercial market [37]; its photo-

micrograph is shown in Fig. 5.2.

B. Gyrator Structure
Next let us synthesize the transfer function of Eq. (5.1a),
considered as voltage to current, in the passive way exhibited in
Fig, 4.2, Without loss of generality we can assume w, = 1l by a

frequency normalization, thus

) £[1,)

H(p) = (5.8a)

p°+2¢p+1 AV
The realization of Eq. (5.3) immediately yields the coupling admittance
of Eq. (4.4) as

=|0] o] 1 o (5.8b)
ol o] o
-1] ol o 1
ol-11-1 2¢

The result of synthesizing XC to yield H(p) in the form of Fig, 4.2 is
shown in Fig. 5.3a) where a pickoff point is also indicated for obtain-
ing a voltage transfer function -H(p) = x[vz]/x[vl]. By using the dual-
transforming properties of the gyrator the circuit of Fig. 5.3h) having
H(p) = i[vz]/i[il] ig obtained,

The effects of a lossy gyrator represented by

Y =]6 1 (5.9)



can be taken into account by adding shunt conductances at the gyrator
ports; by a simple equivalence the resulting circuit (with loss) can

be redrawn as in Fig. 5.3c). For this latter circuit, sensitivities

of Q and W, with respect to almost all parameters have been shown to

be one-half or under [38, p. 95], while the effects of finite bandwidth
[38, p. 97] and phase shift [13, p. 27] of the gyrator amplifiers have

been shown to have rather large influence on Q sensitivity,

C. Brune Sections

Finally let us mention an application of state-variables to
filter design. Since most practical filter characteristics can be
realized as a cascade of Brune sections, and since doubly terminated
filters constructed internally of lossless Brune sections have about
the lowest possible sensitivity to internal parameter variation f39],
it is of interest to set up degree two state-variable analogs of the
Brune section to obtain cascade integrated filter sections for construct-
ing high quality integrated filters, Details have been worked out and
practicality shown by Sheahan [13, pp. 50-92]. For example, the non-
reciprocal Brune section of Fig. 5.4a) has the canonical equations
[3, p. 13)]

e _ - -
B&_ = 0 gz/c2 x1 o+ 0 1 rvi {5.10a)
x, gz/c1 0 %, g8, 9JE1%J
sz = F-—l/c1 0 x|+ 1 0 FVI {5.10b)
4 0 (g-gy) /¢, [x, 0 {J_I%J

where the input and output variables are chosen conveniently for
cascading. On synthesizing these equations using Fig., 2.1, a cascade
results as illustrated in Fig. 5.4b) where a two Brune-section (degree
four) filter is shown; note that even though currents are labeled all
measured quantities are voltages in the analog simulation, The original
sections of Fig. 5.4b) are of course dimensioned according to the normal

Darlington theory as applied to nonreciprocal sections [407.

[19]



"I might have persevered. I might

Have made her tell me more about the white
Fountain we both had seen "beyond the veil"
But ..." [41, p.44]

Discussion

To be sure we have only scratched the surface of available state-
variable results, but those results presented, though in the main
quite recent, appear to be the most significant available for integrated
circuit technology. For example almost all of the topics covered could
be treated in considerable more depth, and some have been in the referenced
literature, while other topics, such as those covering infinite-dimensional
state spaces as applicable to integrated structures, need developing
directly from the start, In fact extensions of the ideas in the direction
of more general microsystems, as to include moving parts {eg,, resonant
gate transistors [42], micromotors [43]) represents a fascinating and
significant area for scientific advancement. And although we have out-
lined some of the points specifically for classical filters they are
applicable in many other areas, for example in constructing integrated
whitening filters [44]. Of course for integrated circuits there are
other than state-variable results of interest [45][46]; for example, most
of the theory of active RC circuits [47] becomes available, while
extensions of the frequency transformation of Eq. (4.5) also seem particu-
larly significant [30]{48].

Most of the orientation of the presented material has been
toward completely integrated structures, where some phenomena, as
temperature sensitivity [46, p. 216], differ from those occuring in only
partially integrated structures, Nevertheless almost all the concepts
treated here do directly apply to partially integrated circuits. For
example the block diagram of Fig. 5.1 covering low sensitivity degree-
two sections can be constructed conveniently from integrated operational
amplifiers and lumped resistors and capacitors using classical integrator
and summer circuits [27, p. 89].

It is interesting to note that all of the structures discussed contain
the minimum number of capacitors. 1In some cases, as for instance

in attempting to minimize the total capacitor area, nonminimal realizations

[20]



may be of interest and the theory of network equivalence via the state
comes into play [5,p.536]6]. In other cases it may be of (theoretical)

interest to observe that if one chooses for any t0

t

T = V-%; V(t) =./‘ o(t,)(t,T)dT, t > t0 {(6.1a)
to
then Eq. (3,6b) reduces for any initial Ao to
Avh=-v st (6.1b)

o

Thus, we see from Fig. 4.2 that any (perhaps unstable [49]) true transfer
matrix (which is real-rational and finite at infinity) has a passive
circuit realization; a rather paradoxical result.

In summary, state-variable theory has much to offer the theory and
practice of integrated circuits. 1Its practical significance and

structural beauty make the theory of state-variables well worthy of study.

"L'été s'en est alléd.

Mais sa voix @tait fraiche comme 1'eau des ruisseaux
et ses cheveux sentaient toutes les fleurs de 1'été
dernier,

Reviendras-tu un jour la-bas?" [50, p. 28]

[21]
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