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INTRODUCTION

After a study of existing computer routines for obtaining the state-
space equations from a given network, V-1 it was apparent that such
routines were rather complicated for many applieations.

Presently, a simple, general method for determining the state equa-
tions for a network is available!—a method that does not have the
restriction that the admittance deseription exist. However, this proce-
dure can be simplified for the very large percentage of practical cireuits
where an admittance deseription does exist. This latter can ensily be
found by computer routines!! that form an indefinite admittance matrix
for the whole system and reduce it to a definite admittance matrix for
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214 / State-Variable Equations for Admittance Descriptions

the n-port network. Knowing this, we can profitably develop a simple
algorithm based on the admittance deseription for determining the state-
space equations,

THE ADMITTANCE DESCRIPTION

The problem we consider is to find state equations of the form

x=Fx+ Gu (1a)
y=Hx+ Ju (1b)

for a linear n-port network (given in schematic form) that contains a
finite number of resistors, capacitors, inductors, transformers, gyrators,
and active devices. Since we are working with the admittance, we choose
u = v and y = i. Through the use of the inductor equivalent network
shown in Fig. 1A, the original n-port network can be transformed to an
(n + c)-port network from which all the dynamic elements have been
extracted as capacitors to leave n network with only algebraie constraintas.
In order to analyze networks including transformers using an indefinite
admittance program, the transformer equivalent of Fig. 1B is used. It is
also understood that all the active devices (such as transistors) are re-
placed by their equivalent circuits (for example, hybrid-pi, as described
in Ref. [5], p. 259) and the dynamic elements removed from them in the
manner just deseribed. This resultant (n 4 ¢)-port network is as shown
in Fig. 2.

This (n + ¢)-port network can now be described in an AV = BI
manner (see Ref. [6], p. 47) such that Y,V = I, where Y, isan (n 4+ ¢) X
(n 4 ¢) admittance matrix describing only the resistive network, and
V ond I are (time-domain) eolumn matrices with n + ¢ elements, An
example problem will be worked out subsequent to the presentation of
the algorithm to demonstrate the following steps in detail.
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FIG. 1. Equivalents using gyrators. A—Induetor equivalent., B—Transformer
equivalent.
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FIG. 2 Dynamic element extraction.

Let us arrange V and I as follows:

-

such that v and i refer to the original terminal ports and V, and I, refer to
the dynamic element ports, Then by simple rearrangement, Y.V = I can
be brought into the following form (where 1, is the n X n identity matrix):

n { Yon ne ! -1, 0 v
l- | l J Vic =0 (3)
cf [ch ce l 0 I —1. L

Carrying out the multiplication of equation (3) and rearranging gives

nf|l 0 Y. Y. illn
[___ . [ﬁ_ o il Y [ @
el -1, Y.. Yen 0]le

To form the state variables, we use the general approach of con-
sidering charges on capacitors and fluxes in inductors (Ref. [7], p. 301);
since we have removed all the inductors, we need only consider the ea-
pacitor charges. That is, let

where Cis the ¢ X ¢ dizgonal matrix of capacitances (note the extraction

numbering in Fig. 2 where ¢; = n + 1). Assuming C is nonsingular (which
will be true for all ¢ in the time-invariant case), equation (5) can be solved

Py
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for V. us follows:
V. =Cx (6)

Having already chosen x as the state variable matrix defined by (5), we
then notice that

. _ dCy,
r = . = dt
for all the dynamic elements; or in matrix form,

Using the definitions of (5) and (7), we can go to (4) and make the ap-
propriate substitution to give us the final form

1’1{ 0 Ym: Y'"' i }n
ol = = || [CI"x — [-——]| v + |- (8)
c{ x Yce Yﬂ‘ 0 lc

Recalling our previous definition of input and output variables, the
equivalence for equation (1) is, by simple rearrangement of (8),

2=Fx+Gus=zx= —[Y.C]'x ~ [Y.v (9n)

y=Hx+ Ju=i=[Y.J]Cl'x + [Y,.Jv (9b)

If currents are desired as input variables, the first # rows of equation

(8) can be solved for the voltages in terms of the currents and the state

variables and then substituted back into the last ¢ rows of (8), such that
the impedance matrix is determined.

AN EXAMPLE

As a preliminary we remark that the gyrator of Fig. 3 is assumed to
have, by definition, the two-port admittance matrix

_ 0 1/v
Y = [_1/7 0 ] (10a)
ST
1 2
o —0
Port { C Port 2
o —0
3 L}

FIG. 3. Tloating gyrator.
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(where ¥ = gyration resistance), from which the indefinite admittance

b

[ o 1/y 0 | —1/v]
—1/y 0 1/y 0
Yioa = (10b)
0 | —-1/y 0 1/y
| 1/ 0 |-1/v 0

where the terminal numbering is that of Fig. 3. In a similar manner the
indefinite admittance matrix for o voltage-controlled current source is

found.

Now consider the time-invariant circuit of Fig. 4A. After the appro-
priate equivalence substitution for the inductor and the extraction of the
capacitar, the (1 + c)-port resistance network is as in Fig. 4B (in this

case, n = ¢ = 2),
For this four-port network
equation (8) is

with two capacitors the general form of

0 Y!S | YH Yll. : le i!
Y" o an .
Oy | Yu|¥u [1/001 loc][x.]_ Va | Ve [u,]+ =
i Vas | Vas /€12 Yau )Y [t o
2 Yai Yn Yu I Yu 0
(11)
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FIG. 4. A—Time-invariant cireuit.

B—Equivalent circuit.
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The indefinite admittance matrix for the network of Fig. 4B, using
7*C1 = L and ignoring the zeros from node 7, becomes

F 1/R: 0 0 0 | -1/R, 0 7]
0 1/R. 0 —1/Rs 0 0
0 0 0 1/ —1/y 0
Y'; L= (12)
0 —1/R: | ~1/v 1/R, 0 /iy
—1/R, 0 1/v 0 /Ry  |—1/v
|0 ] 0 —1/y 1/v 0

which ean easily be found by adding indefinite matrices for each separate
component and then grounding node 7. For example, the gyrator indefi-
nite matrix of (10b) occurs, after an interchange of row and column 1
with rows and columns 2 and 3, in the lower right of (12); that is, Yina
can simply be inserted into the indefinite Y for the complete (n + ¢)-port,
which has been caleulated with all the inductor ports open-circuited.
Further, since only the voltage difference on C; is of importance, we are
free to set Vs = 0, in which ease the last row and column of Y; can be
deleted. Since node 5 is an internal node, it is to be eliminated. We then

have
Yu| yi] [V I
— =[—- (13)
Yol Yoz l¥s 0
where
—1/R,
va=| i | vm=l-UR,O 1m0y =(/Ry
0

V and L are the voltage and current varinbles of the four-port network.
Solving (13) to obtain the form of Y,V = I gives

Y11 — yiuFerlyu] V = 1 (14)
The definite admittance ¥, for this four-port network is then
-0 0 1/y 0 ]

0 1/R, 0 —-1/R,
Y, = (15)
=1/ 0 Ri/v? | 1/y

0 —I/Rz —1/7 IfRz a
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From (15) and the last ¢ = 2 rows of (11), equation (la) is found
immediately to be

B _ | =R/¥C: —1/vCy ][z /v 0 "
[572] B [ 1/4Cy —1.-"3202] [32] +[ 0 HRJ [”’] S

and equation (1b) to be

[:j:]z[ugc, _1;%2@][2]1“[3 lﬁgz][,‘,’g] (16b)

If it is desired to consider the output as the voltage across the resis-
tor Ry, when v; = (4, we can find the output from the last row of (16b)
multiplied by R. (when v, = 0). Consequently, the method ean be used
to calculate desired transfer functions by proper insertion of ports in a
given structure,

It should be clear that the method just deseribed is extremely simple
and very easily programmed for computer operation. The main character-
istic of this method's simplicity is that no transformations are necessary
to bring the state matrices to proper form, and only simple matrix opera-
tions are needed. The method always works if the admittance matrix Y,
exists. The restriction that the nondynamic admittance description exists
generally means that no capacitor loops or inductor wyes are ullowed,
nor poles at infinity.!® The situation with regard to capacitor loops can
often be handled by the use of the equivalents of Fig. 5. Note that to be
useful this equivalence requires the presence of resistive components
associated with the original delta, as would oceur for example in transistor
hybrid-pi models [no admittance matrix exists for the algebraic coupling
portion of Fig. 5C]. Similarly, inductor wyes can be treated as in Fig. 6.
The restriction of no poles at infinity means the absence of capacitive
paths across any of the original » ports, but it can easily be relaxed by
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FIG, 5. Capacitor delta equivalent.
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FIG. 6. Inductor wye cquivalent.
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FIG. 7. Controlled-seurce equivalents. A—Curreat-controlled current source. B—
Voltage-controlled voltage source. C~—Current-controlled voltage source.
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adding a term Ku to equation (Lb).® Alternatively, if only numerieal
values for transfer functions, and so forth, are desired, a series variable
resistor may be inserted at the ports of interest and then reduced to some
limiting value that does not affect the impedance level in the original
network but allows for an admittance description,

One should, of course, insure that the proper resistive network ma-
trix Y, is used. Thus, if Y, is formed from the indefinite matrix, the eapaci-
tor voltages may be differences of node-to-datum voltages, in which case
differences of columns from the indefinite matrix will be required nlong
with the deletion of appropriate rows and columns needed to isolate the
ports. If all eapacitors are grounded these extra steps are not required.

It is to be noted that voltage-controlled current sources are easily
handied in a stroightforward manner, and therefore, we suggest that the
hybrid-pi model be used for transistor equivalent circuits, Other eon-
trolled sources can be handled by the use of gyrators to convert to the
dual and/or by cascade connections, ns shown in Tig. 7. Independent
current sources can be handled by the addition of a term i, to the right
of equation (1b), with i, found through superposition and Norton’s
theorem. Independent voltage sources are simply brought out as input
ports (or converted to i, with gyrators). A program written using the
algorithmic structure deseribed here has satisfactorily performed on the
simple circuits analyzed thus far. Furthermore, this procedure is now
being implemented in a symbolic manner using o combination of the
symbolic languages Sncbol and Altran to give the state-variable matrices
in terms of the explicit element names of the network under consideration.

CONCLUDING REMARK

1t ig not enough lo cover the rock with leaves.

We must be cured of it by a cure of the ground

Or a cure of ourselves, that is equal to a cure

Of the ground, a cure beyond Jorgetfulness.

And yet the leaves, if they broke inio bud,

I they broke into bloom, if they bore fruit,

And if we ate the incipient colorings

Of their fresh culls might be a cure of the ground.
—Stevenstta
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