For NMOS transistors assume \(k = 4 \text{mA/V}^2 = \frac{(Kp)}{2}(W/L) \), \(V_{TO} = 1 \text{V} \), \(\lambda = 0 \); for PMOS assume complementary to NMOS except \(k = 2 \text{mA/V}^2 \).

For bipolar assume \(\beta = 100 \), \(V_A = \text{Early voltage} = 200 \text{V} \)

1. (20 points 10 minutes; NMOS inverter)
 For the following circuit determine the input voltage \(V_{tr} \) for which when \(v_{in} > V_{tr} \) the NMOS transistor is in the triode region.

 ![NMOS Inverter Circuit](image)

2. (35 points, 20 min; NMOS bias & gain)
 For the following NMOS amplifier assume \(RL = RS = 2k \Omega \) and \(RA \) need not = \(RB \) (and not necessarily large).
 a) For \(I_D = 1 \text{mA} \) find the Q point (bias) values for \(V_{GS} \) and \(V_{DS} \) and check that the transistor is in saturation
 b) Draw the mid-band gain small signal equivalent circuit and give the mid-band voltage gain \(A_v = \frac{v_{out}}{v_{in}} \) (where voltages are measured with respect to ground and the capacitors are assumed shorts) [include \(RA \) & \(RB \)].

 ![NMOS Amplifier Circuit](image)
3. (25 points, 20 min; OTA circuit gain and ODE)

![OTA Circuit Diagram]

a) For this circuit give the voltage transfer function $A_v(s)$.

b) Give the differential equation relating $v_o(t)$ to $v_i(t)$.

4. (20 points 10 minutes; Small signal parameters)

The FIN-FET is a new transistor being considered for quantum systems. An N-type FIN-FET with n fins has the same circuit symbol and is like an NMOS (with no gate current and bulk tied to source) but has the n-power law ($n=$number of fins, any positive real n but normally an integer)

Off: $i_D=0$ for $v_{GS}<V_{th}$

And for $v_{GS}\geq V_{th}$:

Saturation: $i_D=k(v_{GS}-V_{th})^n(1+\lambda v_{DS})$ for $v_{DS}\geq(v_{GS}-V_{th})$

Triode: $i_D=k([2(v_{gs}-V_{th})^{n/2}/v_{DS}^{n/2})]-v_{DS}^{n}(1+\lambda v_{DS})$ for $v_{DS}\leq(v_{GS}-V_{th})$

a) Show that there is a number of fins, n, for which the FIN-FET behaves like an NMOS transistor

b) For any positive real n, assuming a FIN-FET is biased to be in saturation, find its g_m and g_{o} in terms of Q point values and draw low frequency equivalent circuit.