Short-circuit Capability of SiC MOSFETs

Susanna Yu, Minseok Kang, Diang Xing, Tianshi Liu, Boxue Hu, Arash Salemi, Anant Agarwal

The Ohio State University
Department of Electrical and Computer Engineering
Center for High Performance Power Electronics
Outline

1. Introduction
2. Test setup configuration
3. Test results
 - Current Saturation
 - Short-circuit
4. Design for longer Short-circuit Times
5. Conclusion
Short L_{ch} results in lower R_{ch} but reduces short-circuit time (t_{sc}).
Test setup

- Protector Resistor
- Bleeder Resistor 66kΩ
- DC Link Capacitor 300µF
- Ceramic Capacitor
- DC Source
- GND

- V_{DS}
- V_{G}
- DUT

- 5kΩ
- 18 V
- 700 V
- 62.5 A
- 1 µs
D1 (Si) is best up to 400 V
D3, D4 (SiC) seem best among SiC devices

<table>
<thead>
<tr>
<th>#</th>
<th>Material</th>
<th>Rating</th>
<th>V_{GS}</th>
<th>Area [mm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Si</td>
<td>900V/5.1A</td>
<td>9V</td>
<td>7.85</td>
</tr>
<tr>
<td>D2</td>
<td>SiC</td>
<td>900V/11.5A</td>
<td>18V</td>
<td>1.89</td>
</tr>
<tr>
<td>D3</td>
<td>SiC</td>
<td>1200V/12A</td>
<td>20V</td>
<td>3.85</td>
</tr>
<tr>
<td>D4</td>
<td>SiC</td>
<td>1200V/14A</td>
<td>20V</td>
<td>3.96</td>
</tr>
<tr>
<td>D5</td>
<td>SiC</td>
<td>1200V/31.6A</td>
<td>20V</td>
<td>8.48</td>
</tr>
</tbody>
</table>
All devices have 10 µs short-circuit time at $V_{DS}=300$ V

<table>
<thead>
<tr>
<th>#</th>
<th>Material</th>
<th>Rating</th>
<th>V_{GS}</th>
<th>V_{DS}</th>
<th>Area [mm2]</th>
<th>E_{diss}/Area</th>
<th>V_{max} ($t_{SC}=10$ µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Si</td>
<td>900V/5.1A</td>
<td>10V</td>
<td>300V</td>
<td>7.85</td>
<td>1.00J/cm2</td>
<td>400V</td>
</tr>
<tr>
<td>D2</td>
<td>SiC</td>
<td>900V/11.5A</td>
<td>20V</td>
<td>300V</td>
<td>1.89</td>
<td>5.22J/cm2</td>
<td>200V</td>
</tr>
<tr>
<td>D3</td>
<td>SiC</td>
<td>1200V/12A</td>
<td>20V</td>
<td>300V</td>
<td>3.85</td>
<td>3.71J/cm2</td>
<td>300V</td>
</tr>
<tr>
<td>D4</td>
<td>SiC</td>
<td>1200V/14A</td>
<td>20V</td>
<td>300V</td>
<td>3.96</td>
<td>4.93J/cm2</td>
<td>600V</td>
</tr>
<tr>
<td>D5</td>
<td>SiC</td>
<td>1200V/31.6A</td>
<td>20V</td>
<td>300V</td>
<td>8.48</td>
<td>5.41J/cm2</td>
<td>500V</td>
</tr>
</tbody>
</table>

![Graph showing gate voltage and I_{DS}/Area over time](image)
D4 is the only 1200V SiC MOSFET with $t_{sc}=10\mu s$ at 600V

$V_{\text{max}}(t_{sc}=10\mu s)=400V$

$V_{\text{max}}(t_{sc}=10\mu s)=200V$

$V_{\text{max}}(t_{sc}=10\mu s)=300V$

$V_{\text{max}}(t_{sc}=10\mu s)=500V$

$V_{\text{max}}(t_{sc}=10\mu s)=600V$
Device are degraded after short-circuit test

Before SC test

After SC test

V_T shifts to positive by 0.5 V

$V_{GS} = 8V \sim 20V$

R_{on} increases
Conclusions for short-circuit test

✓ Only D4 could withstand 10μs of short-circuit time at 50% of the rated voltage.

✓ Design modification may improve short-circuit time.
Design for longer short-circuit times

[A] Conventional

[B] Shielded MOSFET

[C] BGMOSFET

2. Proceedings of the 30th ISPSD, 2018
[A] Increase in channel length increases R_{on} (not preferred)
Long channel length results in:

- Higher channel resistance
- Lower output conductance

![Graph showing the relationship between drain current and drain voltage for different channel lengths.](image)
Very short channel length results in very high currents at short-circuit

\[V_{gs} = 20V \]

- \(L_{ch} = 0.3\mu m \)
- \(L_{ch} = 0.5 \sim 2.0\mu m \)
Short channel length leads to high electric field at Point “A”
Short channel length leads to high peak electric field at Point “A”
Short-circuit time improves with shielded P+ structure\(^1\) + No increase in \(R_{\text{on}}\) + Reduced saturation current

Additional P⁺ shielding does not help

Source Metal

Inter Layer Dielectric

N⁺ Poly Si

Gate Ox, 500Å

N⁺ Source

2E17/cm³

Lₜₜ = 0.5µm

d=0.4µm

P⁺ = 1E19/cm³

P⁺ = 1E19/cm³

0.2µm

0.4µm

N drift layer for 1.2 kV device

: 10 µm, 1E16 /cm³

Substrate

Drain

V₉₅ = 20V

Shielded MOSFET, d=0.2µm (Lₜₜ=0.5µm)

Shielded MOSFET, d=0.4µm (Lₜₜ=0.5µm)

Drain voltage (V)

Drain current (A)
Electric field at point “A” reduces in shielded MOSFET
R_{on} remains the same with shielded MOSFET

Source Metal

Inter Layer

Dielectric

N$^+$ Poly Si

Gate Ox, 500Å

Ni Ohmic

P$^+$

N$^+$ Source

2E17/cm3

$L_{ch} = 0.5\mu$m

0.6µm

$d=0.2\mu$m

P$^+$ = 1E19/cm3

P well = 1E18/cm3

3.0µm

N drift layer for 1.2 kV device

: 10 µm, 1E16 /cm3

Substrate

P well = 1E18/cm3

N$^+$ Source

Drain

Graph

- **V$_{gs}$ = 20V**
- **Conventional**
 - *(L$_{ch}$=0.5µm)*

Shielded MOSFET, d=0.2µm

(L$_{ch}$=0.5µm)

Shielded MOSFET, d=0.4µm

(L$_{ch}$=0.5µm)

Drain current (A)

- 1.5E-5
- 1.0E-5
- 5.0E-6
- 0.0E+0

Drain voltage (V)

- 0
- 5
- 10
- 15
- 20
1.2 kV rated SiC Buffered-Gate MOSFETs
Kijeong Han, Woongje Sung, B. Jayant Baliga
Proceedings of the 30th ISPSD conference, 2018
BG MOSFET increases R_{on} but further reduces short-circuit current
- May require additional processing

![Graph showing the comparison between BG MOSFET and Conventional MOSFET with different channel lengths and x values at a gate voltage of 20V.](image)
Conclusions

We can keep short channel length and increase short circuit time by using Shielded MOSFET1.