Wet Oxidation and Hydrogen Incorporation on 4H-SiC (c-face)

Can Xu, Voshadhi Amarasinghe, Gang Liu, Boris Yakshinskiy, Sarit Dhar, Torgny Gustafsson, Joseph Bloch and Leonard Feldman

1Institute of Advance Materials, Devices and Nanotechnology (IAMDN), Rutgers University
2Department of Physics, Auburn University
Hydrogen reduces the interface defect density in Si MOS devices.

Effect on SiC?

Questions to answer:
- Is there hydrogen at the interface?
- Hydrogen vs. defect?
- Hydrogen vs. electrical properties?

Water uptake during device processing

Does hydrogen go into the oxide/interface during device processing?
Does this result in a electrical degradation?
Effect of pyrogenic oxidation (H_2+O_2) on D_{it} & μ_{FE}

Wet oxidation: temperature \uparrow D_{it} \downarrow

Effect of pyrogenic oxidation (H$_2$+O$_2$) on D$_{it}$ & μ_{FE}

Wet oxidation: temperature \uparrow D$_{it}$ \downarrow

Post oxidation H$_2$ anneal: D$_{it}$ \downarrow

Effect of pyrogenic oxidation (H_2+O_2) on D_{it} & μ_{FE}

![Graphs showing the effect of wet oxidation temperature on D_{it} and channel mobility μ_{FE}, and the effect of post oxidation H_2 anneal on D_{it} and μ_{FE}](image)

- Wet oxidation: temperature \uparrow D_{it} \downarrow
- Post oxidation H_2 anneal: D_{it} \downarrow
- Post oxidation H_2 anneal: μ_{FE} \uparrow

Effect of hydrogen anneals on D_{it}

Effect of H$_2$ annealing at 500° C for Pt gated oxide

Final outcome:
- NO anneal reduced higher energy defects closer to E_c
- H$_2$ anneal reduce defects deeper into the gap
- NO + H$_2$ anneal reduced the defect density throughout the 0.2-1.6 eV range

S. Wang et al. PRL 98, 2007, 026101
Effect of hydrogen anneals on D_{it}

Effect of H_2 annealing at 500° C for Pt gated oxide

Final outcome:
- NO anneal reduced higher energy defects closer to E_c
- H_2 anneal reduce defects deeper into the gap
- NO + H_2 anneal reduced the defect density throughout the 0.2-1.6 eV range

S. Wang et al. PRL 98, 2007, 026101
Effect of hydrogen anneals on D_{it}

Effect of H_2 annealing at 500° C for Pt gated oxide

Final outcome:
- NO anneal reduced higher energy defects closer to E_c
- H_2 anneal reduce defects deeper into the gap
- NO + H_2 anneal reduced the defect density throughout the 0.2-1.6 eV range

S. Wang et al. *PRL* 98, 2007, 026101
Nuclear Reaction analysis (NRA)

Sensitivity to 2 x 10^{12} atoms/cm^2 (0.1% of a monolayer)

\[
\frac{3}{2}\text{He} + \frac{2}{1}\text{D} \rightarrow \frac{4}{2}\text{He} + \frac{1}{1}\text{p}
\]

Roughly: \(\frac{4}{2}\text{He}: 3.6\text{MeV} \quad \frac{1}{1}\text{p}: 14.7\text{MeV}\)

Proton Yield \(\propto Q\Omega\sigma(E)N_t\)

\(N_t: \text{deuterium area density}\)
Summary of “D” uptake by 4H-SiC faces vs Si

Interface D content: after annealing dry oxide in D₂O at 400° C for 15 hrs

Summary of “D” uptake by 4H-SiC faces vs Si

Flat band voltage shift is proportional to the interface “D”

![Graph showing the relationship between flat band voltage shift (ΔV_{fb}) and interface D content (cm$^{-2}$).](image-url)
Relationship between wet oxidation and interface “D” concentration
Wet oxidation

Oxidation at different temp. using D$_2$O

Stripping oxide followed by NRA
Wet oxidation

Oxidation at different temp. using D$_2$O

Stripping oxide followed by NRA

The less D retained at the interface during wet oxidation, the better N_{it}.
Post oxidation D_2 anneal

Wet oxidation at 1000° C

D_2 exposure at different temp.

C-V and NRA analysis
Post oxidation \(\text{D}_2 \) anneal

Post oxidation anneal improves the interface, and the defect density is inversely proportional to the D amount.

\[N_{lt} \times 10^{12} \]

\[\text{D}^2 \text{content} \times 10^{14} / \text{cm}^3 \]
Temperature dependent “D” uptake by exposure to D$_2$O from the SiO$_2$(dry)/SiC interface
Temperature dependent water uptake

Oxidation at 1150° C

D$_2$O exposure at different temp.

Stripping oxide followed by NRA
Temperature dependent water uptake

Oxidation at 1150° C

D$_2$O exposure at different temp.

Stripping oxide followed by NRA

D uptake is maximal at 700 °C
Temperature dependent water uptake

Oxidation at 1150° C

D₂O exposure at different temp.

Stripping oxide followed by NRA

4H-SiC (0001)

H passivation of Pb defect on Si(111)

D content (E13 atoms/cm²)

Normalized area Pb density

 Anneal Temperature (°C)

A. Stesmans, JAP 2002

H passivation of Pb defect on Si(111)
Effect of NO passivation on “D” uptake
Effect of NO passivation on “D” uptake

NO passivation significantly reduce the interface “D” at the SiO$_2$/SiC interface.
Conclusions

- Our quantification of D content with temperature, in combination with electrical measurements, suggest there is an optimum D content, hence the need to control temperature.

- D uptake is maximal at 700 °C

- At high temperatures: D incorporation during wet oxidation and post dry + D$_2$O annealing similarity suggest that “D” atoms bond to similar sites.

- D uptake as function of temperature is consistent with combined “up-take” and “loss” chemical processes, as previously identified for Si, but with characteristic temperatures substantially higher for SiC.
Questions and comments
Interfacial D content (c-f) vs V_{fb}

- NO
- O_2
- Ar

V_{fb} (V)

Interface D ($x10^{13}$ cm$^{-2}$)

D_2O exposure

- D passivate defects at the interface

N takes up defects site, D in the bulk does not affect V_{fb}