4H-SiC MOSFETs with: (i) Phosphosilicate glass gate dielectric (ii) Surface counter-doping with Sb

C. Jiao, Y. Zheng, A. Modic, T. –I. Smith, A. C. Ahyi and S. Dhar
Dept. of Physics, Auburn University, Auburn, AL, USA
Channel mobility problem in SiC power MOSFETs

- Channel mobility in commercial MOSFETs low \sim20 cm2 V$^{-1}$ s$^{-1}$
- Channel can contribute up to 50% of total on-resistance
- Higher mobility \rightarrow Smaller chip size, lower operating oxide fields, less design constraints, lower blocking voltages etc.

\[R_{\text{channel}} \propto \frac{1}{\mu_{\text{channel}}} \]
SiO$_2$-4H-SiC interface traps

Nano-scale imperfections and defects at/near the SiO$_2$/SiC interface

\[J = \sigma E = q n \mu E \]

- Interface traps reduce both \(n \) and \(\mu \) by trapping and Coulomb scattering

\[
4H-SiC \begin{cases}
N_{it} \sim 10^{13} \text{ cm}^{-2} & \text{(as-oxidized, without passivation)} \\
\frac{\mu_{ch}}{\mu_{bulk}} \approx 1\% \end{cases}
\]

Interface trap passivation

As-oxidized

NO annealed

- Ideal model: Slope = C_{ox}/q

- Measured:
 - Slope $\ll C_{ox}/q$

- **As-ox:** >90% free e- remain trapped
- **NO:** Reduction of trap density: $>10^{13}$ cm$^{-2}$ → $\sim 10^{12}$ cm$^{-2}$

- **Ideal model:** Slope = C_{ox}/q
- **Measured slope:** ≈ C_{ox}/q

- **NO annealing:** t_{ox} = 550 A

- **1175°C NO annealing**

- **Interface trap passivation**
Si MOSFET: ‘Universal’ mobility behavior

\[
\frac{1}{\mu_{\text{ch}}} = \frac{1}{\mu_{\text{phonon}}} + \frac{1}{\mu_{\text{coulomb}}} + \frac{1}{\mu_{\text{SR}}}
\]

Takagi et al., IEEE TED, 12, 2357 (1994)

- Low electron density \(n\): Coulomb scattering
- Moderate \(n\), moderate temperature: Phonon scattering
- High \(n\): Surface roughness scattering
Mobility in NO annealed 4H-SiC MOSFET

$S. \text{ Dhar et al., ICSCRM (2011)}$

$T < 373 \text{ K, } T \uparrow \mu \uparrow$
- Coulomb scattering
- Thermally activated transport

$T > 400 \text{ K, } T \uparrow \mu \downarrow$
- Coulomb scattering at low fields
- Phonon and surface roughness scattering at high E fields

$1175^{\circ}C \text{ NO}$
$t_{ox} = 550 \text{ A}$

No n dependence

$\propto T^1$

Hall Mobility (cm2 V$^{-1}$ s$^{-1}$)
Temperature (K)

- n_s: 7.4E11 cm$^{-2}$
- n_s: 1.4E12 cm$^{-2}$
- n_s: 4.0E12 cm$^{-2}$
- n_s: 5.0E12 cm$^{-2}$
Summary of 4H-SiC MOS interface treatments

THIS TALK

- Group I: Hydrogen/wet anneals: $\mu \approx 200 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1}$, weakly bonded, instability
 - Na, K: $\mu \approx 200 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1}$, heavy instability (mid 2000s, Chalmers Univ., Sweden)
 - Cs, Rb: $\mu \approx 40 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1}$, high D_{it}, Lichtenwalner et al., Appl. Phys. Lett. (2014)

- Group II: Alkaline earth metals
 - Ca, Ba, Sr (oxide interlayers): $\mu \approx 90 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1}$, low D_{it}, Lichtenwalner et al., Appl. Phys. Lett. (2014)

- Group III: B (Borosilicate glass): $\mu \approx 100 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1}$, low D_{it}, Okamoto et al., IEEE EDL, (2014)

- Group V: N (Various processes): $\mu \approx 35 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1}$, low D_{it}, most reliable oxide

Most widely studied SiC MOS system 2000-2014

- P (Phosphoslicate glass): $\mu \approx 100 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1}$, low D_{it}, poor long term stability
 - Okamoto et al., IEEE EDL, (2010)

- Sb (surface doping) + N: $\mu \approx 100 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1}$, low D_{it}, technologically promising
 - Modic et al., IEEE EDL, (2014)
Scaling between interface trap density and mobility

\[\frac{1}{\mu_{ch}} = \frac{1}{\mu_{phonon}} + \frac{1}{\mu_{coulomb}} + \frac{1}{\mu_{SR}} \]

- NO annealing: Most established trap passivation method
- \(\mu \) scales with number of interface traps (Rozen et al. IEEE TED, 2011)
- Trapping and Coulomb scattering limited at low gate voltages
Recent Results: Non-scaling between trapping and mobility

\[
\frac{1}{\mu_{\text{ch}}} = \frac{1}{\mu_{\text{phonon}}} + \frac{1}{\mu_{\text{coulomb}}} + \frac{1}{\mu_{\text{SR}}}
\]

- Surface counter doping by N and P
- Inaccurate \(D_{\text{it}} \) measurements as ‘fast traps’ not included. (Yoshioka et al., J. Appl. Phys., 2012)
Nitridation and phosphorus treatments lead to unintentional surface counter-doping.
‘Fast states’ and the $C-\psi_s$ method

Generation of very fast states by nitridation of the SiO$_2$/SiC interface

Hironori Yoshioka,1 Takashi Nakamura,2 and Tsunenobu Kimoto1,3

1Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan
2New Material Devices R&D Center, Rohm Co., Ltd., Kyoto 615-8585, Japan
3Photonics and Electronics Science and Engineering Center, Kyoto University, Kyoto 615-8510, Japan

(Received 5 March 2012; accepted 2 July 2012; published online 31 July 2012)

Fast states at SiO$_2$/SiC interfaces annealed in NO at 1150–1350 °C have been investigated. The response frequency of the interface states was measured by the conductance method with a maximum frequency of 100 MHz. The interface state density was evaluated based on the difference between quasi-static and theoretical capacitances ($C-\psi_s$ method). Very fast states, which are not observed in as-oxidized samples, were generated by NO annealing, while states existing at an as-oxidized interface decreased by approximately 90%. The response frequency of the very fast states was higher than 1 MHz and increased when the energy level approaches the conduction band edge. For example, the response frequency (time) was 100 MHz (5 ns) at $E_C-E_T=0.4$ eV and room temperature. The SiO$_2$/SiC interface annealed in NO at 1250 °C showed the lowest interface state density, and NO annealing at a temperature higher than 1250 °C is not effective because of the increase in the very fast states. © 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4740068]
What is PSG?

\[\text{SiO}_2 + \text{P}_2\text{O}_5 \rightarrow (\text{P}_2\text{O}_5)_x(\text{SiO}_2)_{1-x} \]

Advantages and disadvantages:

- Low \(D_{it} \)
- High \(\mu_{fe} \)
- Instability
 - Polarization at low E-field stress
 - Electron/hole trapping at high E-field stress
Phosphosilicate glass (PSG) formation process

\[4\text{POCl}_3 + 3\text{O}_2 \rightarrow 2\text{P}_2\text{O}_5 + 6\text{Cl}_2 \]

Condition:

Maintain \(\text{POCl}_3\) at 15°C; bubble through by \(\text{N}_2\);
Anneal at 900~1100°C (15min) flowing \(\text{O}_2\);
Post anneal (drive-in, 30min) with \(\text{N}_2\) at same temperature as annealing.

Allows the study of annealing temperature variation
Phosphorus uptake with temperature variation

![Graph showing phosphorus uptake with temperature variation. The x-axis represents annealing temperature (°C) ranging from 900 to 1100. The y-axis represents phosphorus interface coverage and bulk percentage. The graph shows a decrease in both parameters as the temperature increases.]

Courtesy: C. Xu and L.C. Feldman, Rutgers Univ.
Reason for different P uptake

\[(\text{P}_2\text{O}_5)_x \ (\text{SiO}_2)_{1-x}\]

<table>
<thead>
<tr>
<th>POCl$_3$ temp</th>
<th>Bulk P percent (%)</th>
<th>x value</th>
</tr>
</thead>
<tbody>
<tr>
<td>900°C</td>
<td>6.7</td>
<td>0.115</td>
</tr>
<tr>
<td>950°C</td>
<td>5.2</td>
<td>0.087</td>
</tr>
<tr>
<td>1000°C</td>
<td>4.6</td>
<td>0.076</td>
</tr>
<tr>
<td>1050°C</td>
<td>4.6</td>
<td>0.076</td>
</tr>
<tr>
<td>1100°C</td>
<td>4.2</td>
<td>0.069</td>
</tr>
</tbody>
</table>

During the drive-in annealing, some P$_2$O$_5$ is lost to the gas phase by evaporation.

Interface traps correlation with P coverage

$C-\psi_s$ characterization

Taking ‘fast states’ into account, higher P coverage leads to lower D_{it}

Courtesy: $C-\psi_s$ code provided by D. Morisette, Purdue Univ.
PSG: Lower density of ‘fast traps’

Low temperature G-ω measurement

Wei-Chieh Kao et al., Semiconductor Science and Tech., 2015
PSG Instability

1000 °C PSG

Capacitance (F)

Voltage (V)

\[\Delta V \sim -2.9 V \]

1100 °C PSG

Capacitance (F)

Voltage (V)

\[\Delta V \sim 0.65 V \]

BTS condition: 150°C, +1.5MV/cm, 5 min
Two competing mechanisms of instability: trapping and polarization

BTS: \[qN_{\text{net}} = q(N_{\text{trp}} - N_{\text{pol}}) = C_{\text{ox}} \times \Delta V_{\text{FB}} \] (1)

Relaxation (20 days): \[N_{\text{pol}} \approx 0, \quad qN_{\text{trp}} = C_{\text{ox}} \times \Delta V_{\text{FB}} \] (2)

(assumption: electron trapping relaxes much slower than polarization)

Devices with 1 h BTS:

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>(N_{\text{pol}} (\times 10^{12} \text{ cm}^{-2}))</th>
<th>(N_{\text{trp}} (\times 10^{12} \text{ cm}^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1.23</td>
<td>0.77</td>
</tr>
<tr>
<td>1050</td>
<td>0.40~0.66</td>
<td>0.60~1.45</td>
</tr>
<tr>
<td>1100</td>
<td>0.32</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Polarization scales with phosphorus uptake.
Field-effect mobility μ_{fe} dependence on P

At high E-field, mobility of 1000°C PSG is highest.

Possible reason: Trade-off between trap passivation and counter-doping

$L = 150\mu m$, $W = 290\mu m$
Temperature dependence of mobility: PSG

\[
\frac{1}{\mu} = \frac{1}{\mu_c} + \frac{1}{\mu_{sr}} + \frac{1}{\mu_{sp}}
\]

- \(\mu_c\): \(T \uparrow, \mu_c \uparrow\)
- \(\mu_{sp}\): \(T \uparrow, \mu_{sp} \downarrow\)
- \(\mu_{sr}\): weak \(T\) dependence

MOSFET (900°C) mobility from 80K to 250K. The arrow represents the rising of ambient temperature.

MOSFET (1100°C) mobility from 100K to 400K. The arrow represents the rising of ambient temperature.
PSG Summary

- POCI$_3$ annealing temperature variation causes different P interface coverage
- Correlation: higher P coverage results in lower D_{it}
- Two competing mechanisms of instability identified: trapping and polarization. Polarization charge scales with P uptake.
- Correlation between P coverage and μ_{fe} needs further investigation
- Temperature dependence of μ_{fe} shows different limiting mechanisms: Coulomb scattering μ_c and surface roughness scattering μ_{sr}.
Separation of trap passivation and counter-doping effects

• Difficult to investigate using N or P as they result in both effects

• Heavier dopants (As, Sb) not expected to chemically passivate dangling bonds

• Surface counter-doping with Sb
Effects of surface counter-doping

- Higher carrier density at same E_\perp
- Less traps filled at V_T due to less band-bending, efficient screening ($\mu_C \uparrow$)
- $E_\perp \downarrow \rightarrow \mu_{SR} \uparrow$ for same carrier density

- Ideally V_T reduction is smaller as counter-doping thickness is reduced
- In practice, V_T determined by combination of doping and interface charge
Sb surface doping process

80 keV, 2.2E13 cm\(^{-2}\) Sb\(^+\)

Activation 1550°C

~100 Å Sb counter-doping

Controlled oxidation

SIMS

Sb concentration (atoms/cm\(^3\))

Post activation anneal

SRIM simulation

Source

Gate

Drain

Oxide

p-type SiC
Sb profile after oxidation

- ~75% of Sb lost during oxidation
- Total interfacial amount: ~5.7E12 cm\(^{-2}\)
- Total activated amount: ~10%
- Width of profile limited by depth resolution of SIMS. Layer < 10 nm
- No crystal damage detected by ion scattering

Graphical Elements

- SiO\(_2\)
- SiC
- FWHM ~10 nm
Surface counter-doping results

Graph: Field-effect mobility
- **p-well:** $6E15 \text{ cm}^{-3}$
- **T=300 K**
- **Sb+NO**
- **NO**
- **Sb**

Table: Sample Characteristics

<table>
<thead>
<tr>
<th>Sample</th>
<th>Oxide Thickness (NM)</th>
<th>Threshold voltage (V)</th>
<th>$\mu_{FE, max}$ (cm2 V$^{-1}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>60</td>
<td>2.0</td>
<td>32</td>
</tr>
<tr>
<td>Sb</td>
<td>65</td>
<td>1.5</td>
<td>80</td>
</tr>
<tr>
<td>Sb+NO</td>
<td>80</td>
<td>1.1</td>
<td>110</td>
</tr>
</tbody>
</table>
Sb acts as a dopant but does not passivate traps

Low temperature

High temperature
Temperature dependence of ‘Sb+NO’ mobility

- Low field performance at high temperature better than NO
- High field performance at higher temperature similar to NO
- Low temperature behavior same as NO
‘Universal’ mobility behavior for NO annealed interfaces
‘Sb+NO’: Threshold voltage stability
Sb process applied to heavier doped p-wells:

<table>
<thead>
<tr>
<th>P-body doping</th>
<th>Standard NO(no Sb)</th>
<th>Sb 2.5E13cm⁻²</th>
<th>Sb 5E13cm⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 1E17</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Al 5E17</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Al Implant concentration 1e17/cm³: mask Mo 1000 A, SiO₂ 150 A
Sb process applied to heavier doped p-wells:

P-well: $1E17$ cm$^{-3}$, tox: ~60 nm

Main advantage of surface counter-doping: Higher sub-threshold slope
Sb process applied to heavier doped p-wells:

- P-well: $5 \times 10^{17} \text{ cm}^{-3}$, tox: $\sim 60 \text{ nm}$

- Higher S can be obtained on heavy p-wells
- Process optimization: Uneven activation/loss of Sb
Summary

• Highlights of recent SiC MOS channel engineering results presented
• Transport limited by ‘fast traps’ and ‘surface roughness’
• Details of these mechanisms not clear
• ‘Universal’ mobility behavior in SiC MOSFETs identified
• PSG is a unique model system to study channel transport with minimal effects of trapping
• Surface counter-doping processes have strong potential for threshold voltage control and sub-threshold slope improvement in practical MOSFETs
Acknowledgements

- A. C. Ahyi, T.-Isaacs Smith, A. Modic, C. Jiao, Y. Zheng (Auburn group)
- G. Liu and L. C. Feldman (Rutgers University)
- D. Morissette and J.A. Cooper (Purdue University)
- S.T. Pantelides and group (Vanderbilt University)
- P. Mooney (Simon Fraser University)
- M. Goryll (Arizona State)
- R. Kaplar (Sandia)
- A. Lelis (ARL)
THANK YOU !!