Chapter 1:

1.2) Based entirely on the information given and not making any "realistic" assumptions: $\$ 200,000,000$ divided by 100,000 simultaneous calls (think of each call as a "line") gives: $\$ 200 /$ line. The line can take 20 three minute calls/hour so 480 calls/day so $480 \times 360 \times 15=2592000$ calls per lifetime of the satellite. So each call costs: $\$ 200 / 2592000$ or .0077 cents. (note this naively assumes that each line will be used continuously)
1.3) The illumination at 40000 km for a 30 W source will be $30 /\left[4 * \pi^{*}(40000)^{2}\right]=1.492 \times 10^{-9} \mathrm{~W} / \mathrm{km}^{2}=1.492 \times 10^{-15} \mathrm{~W} / \mathrm{m}^{2}$
a) So a $1 \mathrm{~m}^{2}$ antenna will receive $1.492 \times 10^{-15} \mathrm{~W}$
b) If the Tx antenna has a linear gain of 1000 , then the received signal will be $1.492 \times 10^{-12} \mathrm{~W}$
1.4) $1000 \mathrm{~W} \times 100,000$ antenna gain gives an EIRP of $100,000,000 \mathrm{~W}=80 \mathrm{dBW}$

In linear: $40000 \mathrm{~km}=40,000,000 \mathrm{~m}$ so the received power will be $100,000,000^{*}\left(1 / /\left[4^{*} \pi^{*}(40000000)^{2}\right]^{*}(.5)=2.4868 \times 10^{-9} \mathrm{~W}=-86 \mathrm{dBW}\right.$ In dB: illumination $=80-20 \log (40000)-71=-83 \mathrm{dbW} / \mathrm{m}^{2} .-83+10 \log (.5)=-86 \mathrm{dBW}$
1.5) 1000 W \& an antenna gain of 1000 at $1000 \mathrm{~km}=1,000,000 \mathrm{~m}$ will have an illumination of $1000 * 1000 /\left[4 * \pi^{*}(1,000,000)^{2}\right]=7.9577 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}$.
a) Thinking of the balloon as a 30 m diameter circle means it will reflect: $7.9577 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}{ }^{*} \pi^{*}$ $(30 / 2)^{2} \mathrm{~m}^{2}=.00005625 \mathrm{~W}$
b) Now .00005625 W radiating isotropically will illuminate the ground $1000 \mathrm{~km}=1000000 \mathrm{~m}$ away at $.00005625 /\left[4^{*} \pi^{*}(1,000,000)^{2}\right]=4.476 \times 10^{-18} \mathrm{~W} / \mathrm{m}^{2}$. For a $10 \mathrm{~m}^{2}$ antenna, you will get $4.476 \times 10^{-17} \mathrm{~W}$
1.6) FSL $=\left(4^{*} \pi^{*} 40,000,000 / 0.05\right)^{2}=1.01 * 10^{20}$ This is what you would need to divide by. As a multiplier you get $9.89 * 10^{-21}$. NOTE: you must covert the distance to meters since the wavelength is in meters.
1.7) A 1.5 m dish collects $10^{-10} \mathrm{~W}$. The dish area is $(0.75)^{2 *} \pi=1.767 \mathrm{~m}^{2}$. The efficiency is 0.55 , so the effective area $=1.767^{*} 0.55=0.97185 \mathrm{~m}^{2}$ So the illumination must have been $10^{-10} \mathrm{~W} / 0.97185 \mathrm{~m}^{2}=$ $1.029 \times 10^{-10} \mathrm{~W} / \mathrm{m}^{2}$

Chapter 2:

2.12) $10=10 \mathrm{~dB}, 12.5=10.97 \mathrm{~dB}, 15=11.76 \mathrm{~dB}, 16=12.04 \mathrm{~dB}$ Total $=44.77 \mathrm{~dB}=29991.6$ factor ≈ 30000
2.13)

TX	100 W	20 dBW
Waveguide	$1 / 2$	-3 dB
Antenna	2000	$33 \mathrm{db}(\mathrm{dbi})$
EIRP	$100,000 \mathrm{~W}$	50 dBW

2.14)

This problem can be done in dB or in linear. I will do linear since it seems easier (to me...)
23 dBi antenna is a factor of 200 . So EIRP is $700 * 200=140000 \mathrm{~W}$. The power captured by the satellite will be the illumination times the antenna area, that is:
$\left[140000 /\left(4 * \pi^{*}[40,000,000]^{2}\right)\right]^{*}[3.5]=2.437^{*} 10^{-11} \mathrm{~W}=-106 .{ }^{`} 13 \mathrm{dBW}$

Maybe it would have been easier in dB....
2.15) Reverse link budget! $\mathrm{Pt}+\mathrm{Gt}-\mathrm{FSL}+\mathrm{Gr}=\mathrm{Pr}$ so $\mathrm{Pt}=\mathrm{Pr}-\mathrm{Gt}+\mathrm{FSL}-\mathrm{Gr}$
$\operatorname{Pr}=-100 \mathrm{dBW}$
$\mathrm{Gt}=20 \mathrm{dBi}$
FSL $=20 \log (40000)+20 \log (f)+92.45=184.49+20 \log (f) d B$ (we don't know f, but that's ok....)
For Gr we need the diameter $\mathrm{D}=2^{*} \operatorname{sqrt}(1.5 / \pi)=1.382 \mathrm{~m}$
$\mathrm{Gr}=20 \log (1.382)+20 \log (\mathrm{f})+10 \log (.60)+20.4=20.99+20 \log (\mathrm{f}) \mathrm{dB}$
So:
$\operatorname{Pr}=-100-20+184.49+20 \log (f)-20.99-20 \log (f)=43.5 d B W=22387 W$
2.16) $\mathrm{G}=20 \log (7.5)+20 \log (6)+10 \log (.55)+20.4=50.868 \mathrm{dBi}$
2.18) $\mathrm{Pr}=\mathrm{EIRP}-\mathrm{FSL}+\mathrm{Gr}$

EIRP $=40 \mathrm{dBW}, \mathrm{Gr}=40 \mathrm{dBi}$
FSL $=20 \log (40000)+20 \log (10)+92.45=204.49 \mathrm{~dB}$
$\operatorname{Pr}=40-204.49+40=-124.49 \mathrm{dBW}$
2.19) a) $W=E I R P-20 \log (S)-71=30 d B W-20 \log (40000)-71=-133.04 \mathrm{dBW} / \mathrm{m}^{2}$
b) $\mathrm{Ae}=(.55)^{*} \pi^{*}(3)^{2} / 4=3.8878 \mathrm{~m}^{2}$
c) Converting eqn 2.25 to db gives: $\operatorname{Pr}=W+10 \log (A e)=-133.04+5.9=-127.14 \mathrm{dBW}$
2.20) $\mathrm{G} / \mathrm{T}=25-10 \log (125)=4.03 \mathrm{~dB} / \mathrm{K}$
2.21) $\mathrm{C} / \mathrm{T}=\mathrm{EIRP}-\mathrm{PL}+\mathrm{Gr} / \mathrm{T}$
$\mathrm{Gr} / \mathrm{T}=40-10 \log (100)=20$
$\mathrm{C} / \mathrm{T}=30-200+20=-150 \mathrm{dBW} / \mathrm{K}$
2.22) $\mathrm{C} / \mathrm{N}=\mathrm{C} / \mathrm{T}+228.6-10 \log (\mathrm{BW})=-178.6+228.6-30=20 \mathrm{~dB}$
2.23) $\mathrm{C} / \mathrm{N}=\mathrm{EIRP}-\mathrm{PL}+\mathrm{Gr} / \mathrm{T}+228.6-10 \log (\mathrm{BW})$
$15=40-204+\mathrm{Gr} / \mathrm{T}+228.6-73=\mathrm{Gr} / \mathrm{T}-8.4$
$\mathrm{Gr} / \mathrm{T}=23.4 \mathrm{dBi} / \mathrm{K}$
2.24) $\mathrm{Gt}=20 \log (12)+20 \log (18)+10 \log (.55)+20.4=64.49 \mathrm{dBi}$

FSL = 20log(40000) $+20 \log (18)+92.45=209.60$

Tx	100 W	20 dBW
Gt	12 m ant $\eta=.55,18 \mathrm{GHz}$	64.49 dBi
EIRP		84.49 dBW
FSL	40000 km 18 GHz	-209.6 dB
RSL (before antenna)	$9.5 \mathrm{dBi} / \mathrm{K}$	-125.11 dBW
Gr/T		$9.5 \mathrm{dBi} / \mathrm{K}$
C/T	$228.6 \mathrm{dBHzK} / \mathrm{W}$	$-115.61 \mathrm{dBW} / \mathrm{K}$
$1 / \mathrm{k}$		$228.6 \mathrm{dBHzK} / \mathrm{W}$
C/kT		$112.99 \mathrm{dBHz}(118)$

2.25) $\mathrm{FSL}=20 \log (40000)+20 \log (3.9)+92.45=196.31 \mathrm{~dB}$

Sat EIRP	23 dBW	23 dBW
FSL	-196.31	-196.31 dB
RSL		-173.31 dBW
Gr/T	$29 \mathrm{dBi} / \mathrm{K}$	$29 \mathrm{dBi} / \mathrm{K}$
C/T		$-144.31 \mathrm{dBW} / \mathrm{K}$
$1 / \mathrm{k}$	$228.6 \mathrm{dBHzK} / \mathrm{W}$	$228.6 \mathrm{dBHzK} / \mathrm{W}$
C/KT= C/N N_{0}		84.29 dBHz
BW	40 MHz	-76.02 dBHz
C/N		8.27 dB

2.30)

	Value	Unit	Value (dB)	Unit (dB)
Satellite EIRP	1000	Watts	30	dBW
Path loss	10^{-20}	Ratio	200	dB
Antenna Gain Gr	200	Ratio	23	dBi
RSL C	2×10^{-15}	Watts	-147	dBW
Noise Temp T	100	K	20	dBK
F.O.M G/T	2	$1 / \mathrm{K}$	3	$\mathrm{dBi} / \mathrm{K}$
C/T	2×10^{-17}	$\mathrm{~W} / \mathrm{K}$	-167	$\mathrm{dBW} / \mathrm{K}$
Boltzmann's k	1.3806×10^{-23}	$\mathrm{~W} / \mathrm{HzK}$	-228.6	$\mathrm{dBW} / \mathrm{HzK}$
C/N	1531393	Hz	61.7	dBHz
Bandwidth	1000000	Hz	60	dBHz
C/N	1.531	Ratio	1.7	dB

Chapter 3:
3.1) Assuming the satellite velocity is 0 when it is at 30E, it will drift further East (accelerating) passing 75E (45 degrees away) and continue (decelerating, another 45 degrees) to 120 E at which point it will be at 0 velocity again and start drifting west. NB. The period of oscillation is 3 years (see page 75) so the satellite has enough time to reach 120E and return to 30E. Ans: 120E
3.3)
a) GEO
b) geosync
c) GEO
d) neither?
3.5) 27.3 days $=2352277.2$ seconds. $P=2 \pi r^{3 / 2} \mu^{1 / 2}$ so $r=\mu^{1 / 3}(P / 2 \pi)^{2 / 3}=382283 \mathrm{~km}$
3.6)
a) 60 km altitude means 1800 km radius. $\mathrm{P}=2 \pi \mathrm{r}^{3 / 2} / \mu^{1 / 2}=2 \pi(1800)^{3 / 2} /(4902.78)^{1 / 2}=6852.8$ seconds b) As in 3.5 above, $r=\mu^{1 / 3}(P / 2 \pi)^{2 / 3}=(4902.78)^{1 / 3}(2352277 / 2 \pi)^{2 / 3}=88244 \mathrm{~km}$. NB I used a sidereal day here. An argument could be made for using a 24 hr day.
3.8) We model the orbital slot as a rectangular prism (i.e. a box). The difference between apogee and perigee gives one dimension: 30 km . The north-south dimension is $2 * 74=148 \mathrm{~km}$. For east-west, the distance is $2 * 0.1$ degrees $=0.2$ degrees. At GEO orbit $r=42164$, so 0.2 degrees => $(0.2 / 360) *\left(2 \pi^{*} 42164\right)=147.2 \mathrm{~km}$.
a) volume $=147.2 * 30 * 148=653479.8 \mathrm{~km}^{3}$
b) Each satellite occupies $14 \mathrm{~m}^{3}=.000000014 \mathrm{~km}^{3}$ which is 2.14×10^{-14} part of the volume or 2.14×10^{-12} percent.
NB: The probability of collision is clearly ridiculously small (your chance of winning $\$ 100 \mathrm{M}$ in the Powerball lottery is 1000 times better!) The actual probability of collision is a little tricky to compute. If we assume the satellites are spherical and that a collision occurs whenever one satellite is "tangent" to the other (or closer) then the centers of the two satellites would need to be separated by < twice the satellite radius. Doubling the radius increases the volume by a factor of 8 . Thus the probability of a collision would be the probability that the center of one satellite fell within 8 times the proportion of the area occupied by the other satellite, or $1.7 \times 10^{-13} \ldots$ Still ridiculously small.
3.9)We note that to solve this problem we must know the radius of the satellite orbit. In this case (and as is often the case) we are talking about geostationary orbit (otherwise you would not be able to solve part a) with table 3.4)
b) we have $S=38000$ and $r=42164$ so we can use eqn 3.10 to find $\beta_{0}=\arccos \left[\left(42164^{2}+6378^{2}-38000^{2}\right) /(2 *(42164)(6378))\right]=\arccos (0.6962647)=45.8719$ degrees c)We are going along earth's surface by 45.8719 degrees: distance $=2 \pi(6378)(45.8719 / 360)$ $=5106.33 \mathrm{~km}$
3.13) Using eqns in fig 3.9: $40 \mathrm{~W}=320 \mathrm{E}$, so $\Delta \lambda=320-0=320 . \cos \left(\beta_{0}\right)=\cos (50) \cos (320)=0.4924038765$ $\tan (h)=(0.4924038765-0.15126648) / .870366832=.39194668$, so $h=21.40253146$
3.14)

NOTE: the last case, the ES is at the subsatellite point and the satellite is directly overhead. Thus: $\mathrm{h}=90$ and A is irrelevant/undefined (any azimuth will get you to the same place).
3.15) $120 \mathrm{~W}=240 \mathrm{E}$. ES is at $39 \mathrm{~N}, 283 \mathrm{E}$, so $\Delta \lambda=240-283=-43, \cos \left(\beta_{0}\right)=\cos (39) \cos (-43)=0.5683685756$ $\tan (\mathrm{h})=(0.5683685756-0.15126648) / .822774065=.50694608645$, so $\mathrm{h}=26.88255$ $\tan (A)=\sin (-43) /(-\sin (39) \cos (-43))=-0.68199836 /-0.42919547=1.589015729$ so using arctan we get $A=57.8169559$ degrees. BUT THIS DOESN'T MAKE SENSE (think about it). Since the denominator was negative we must add 180 degrees so the correct $A=237.8169559=-122.1830444$ which does make sense.
3.16) $57 \mathrm{~W}=303 \mathrm{E}$. So $\Delta \lambda=303-283=20, \cos \left(\beta_{0}\right)=\cos (39) \cos (-20)=0.730278325$,
a) $\beta_{0}=43.09026788$
b)I'm not sure what the hint is about, but eqn 3.7 gives:
$\mathrm{S}=\left(42164^{2}+6378^{2}-2^{*}(6378)(42164)(0.730278325)\right)^{1 / 2}=37758.5219 \mathrm{~km}$
$d) \tan (h)=(0.730278325-0.15126648) / .68314974=.847562124$, so $h=40.2833475$
$\tan (A)=\sin (20) /(-\sin (39) \cos (20))=0.34202014 /-0.59136773=-.57835442716$.
arctan gives -30.04313174 but the denominator above is negative so we add 180 and get $A=149.956868$
3.17)

				$\cos \beta_{0}=\cos (\phi) \cos (\Delta \lambda)$			$\tan (\mathrm{h})=\left(\cos \beta_{0}-\mathrm{Re} / \mathrm{r}\right) / \sin \left(\beta_{0}\right)$		
ES lat N	ES long E	geo lat N	geo long E	$\Delta \lambda$	geor	$\cos \beta_{0}$	β_{0}	$\tan (\mathrm{h})$	h
0	300	0	300	0	42164	1	0	inf	90
30	300	0	300	0	42164	0.866025	30	1.429992	55.03473
60	300	0	300	0	42164	0.5	60	0.402957	21.9473
85	300	0	300	0	42164	0.087156	85	-0.06412	-3.66864
	ES long E		$\cos \beta_{0}=\sin \phi \sin (\delta)+\cos (\delta) \cos (\phi) \cos (\Delta \lambda)$				$\tan (\mathrm{h})=\left(\cos \beta_{0}-\mathrm{Re} / \mathrm{r}\right) / \sin \left(\beta_{0}\right)$		
ES lat N		mol lat N	mol long $\mathrm{E} \Delta \lambda$		mol r	$\cos \beta_{0}$	β_{0}	$\tan (\mathrm{h})$	h
0	300	62.9	300	0	45778	0.455545	62.9	0.355464	19.56848
30	300	62.9	300	0	45778	0.83962	32.9	1.289666	52.2102
60	300	62.9	300	0	45778	0.998719	2.9	16.99077	86.63172
85	300	62.9	300	0	45778	0.926529	22.1	2.09296	64.4619

I added a column for $85 \mathrm{~N}, 60 \mathrm{~W}$ ES to illustrate that the earthstation can communicate with the Molniya but not the GEO
3.19(my favorite problem...):
$100 \mathrm{~W}=260 \mathrm{E}$. We need to find $\Delta \lambda$ (to get the ES longitude). We also need ES latitude, \varnothing. We do know: $r=42164, h=50$, and $A=229.59$

We can get β_{0} from eqn 3.3: $\beta_{0}=\arccos [(6378 / 42164) \cos (50)]-50=34.4201884$
Now: $\cos \left(\beta_{0}\right)=34.4201884=\cos (\Delta \lambda) \cos (\varnothing)$ We also have:
$\tan (\mathrm{A})=1.17458961447=\sin (\Delta \lambda) /(-\sin (\varnothing) \cos (\Delta \lambda))$
This is essentially 2 equations with 2 unknowns. We can solve...
$\cos (\varnothing)=\cos \left(\beta_{0}\right) / \cos (\Delta \lambda)$, so $\sin (\varnothing)=\left(1-\cos ^{2}\left(\beta_{0}\right) / \cos ^{2}(\Delta \lambda)\right)^{1 / 2}$, Also: $\sin (\Delta \lambda)=\left(1-\cos ^{2}(\Delta \lambda)\right)^{1 / 2}$
Thus, squaring the expression for $\tan (A)$ above we get:
$\tan ^{2}(A)=\left(1-\cos ^{2}(\Delta \lambda)\right) /\left[\left(1-\cos ^{2}\left(\beta_{0}\right) / \cos ^{2}(\Delta \lambda)\right) * \cos ^{2}(\Delta \lambda)=\left(1-\cos ^{2}(\Delta \lambda)\right) /\left(\cos ^{2}(\Delta \lambda)-\cos ^{2}\left(\beta_{0}\right)\right)\right.$
So
$\tan ^{2}(A)^{*} \cos ^{2}(\Delta \lambda)-\tan ^{2}(A)^{*} \cos ^{2}\left(\beta_{0}\right)=1-\cos ^{2}(\Delta \lambda)$
So
$1+\tan ^{2}(\mathrm{~A}) * \cos ^{2}\left(\beta_{0}\right)=\tan ^{2}(\mathrm{~A}) * \cos ^{2}(\Delta \lambda)+\cos ^{2}(\Delta \lambda)$
So
$\cos ^{2}(\Delta \lambda)=\left[1+\tan ^{2}(A) * \cos ^{2}\left(\beta_{0}\right)\right] /\left(\tan ^{2}(A)+1\right)=.814754596$ so $\Delta \lambda=25.4930395$ or -25.4930395
Which one? Since A is pointing southwest (229 > 180) the earthstation must be further east than the satellite. So $\Delta \lambda$ must be negative: $\Delta \lambda=-25.4930395$, so ES longitude is 285.493E=74.5069605W $\cos (\varnothing)=\cos \left(\beta_{0}\right) / \cos (\Delta \lambda)=0.913893238$ so $\varnothing=23.950962 \mathrm{~N}$
Consulting Google maps reveals you are on San Salvador Island, in the Bahamas. This is (supposedly) the first island Columbus landed on when he discovered the New World.
3.21: There is an error in this problem: 100 W is not equal to 280 E . Assuming it is really 100 W , the satellite will oscillate from 100 W to 116 W . It will go there and back in 3 years. So in 1 year it should go (approximately $2 / 3$ the way to 116 which would be approximately 110.6 W .
In 10 (or 100) years, it will get to 116 W .
3.22)
a) range variation $\Delta \mathrm{S}=+/-\mathrm{e}^{*} \mathrm{r}=.0000537 * 42164=2.2642 \mathrm{~km}$
b) range rate $\mathrm{dS} / \mathrm{dt}=+/-\mathrm{e}^{*} \mathrm{r}^{*} \mathrm{n}=.0000537^{*} 42164^{*} 72.92115^{*} 10^{-6}=.0001651 \mathrm{~km} / \mathrm{s}$
c) range variation $=\Delta \mathrm{S}=+/-\mathrm{i}^{*}(\pi / 180)(\operatorname{Re})^{*} \sin (\emptyset)=(0.0291)^{*}(\pi / 180)^{*}(6378.14)^{*} \sin (39)=2.03862 \mathrm{~km}$
d) range rate $\mathrm{dS} / \mathrm{dt}=+/-\mathrm{i}^{*}(\pi / 180)(\mathrm{Re}) * \sin (\varnothing) \mathrm{n}=2.03862^{*} 72.92115^{*} 10^{-6}=.000148659 \mathrm{~km} / \mathrm{s}$
e) we need $\Delta \lambda$ to compute eqn 3.40. $\lambda_{\text {es }}$ is given as 283E but we need to look at problem 3.20 to get
$\lambda_{\text {sat }}=335.51 \mathrm{E}$. Thus $\Delta \lambda=52.51$ and range rate $\mathrm{dS} / \mathrm{dt}=\mathrm{D}^{*}(\pi / 180)(\operatorname{Re})^{*} \cos (\emptyset) * \sin (\Delta \lambda)=(-.006)^{*}$ $(\pi / 180)^{*}(6378.14)^{*} \cos (39) \sin (52.51)=.-0.4118604 \mathrm{~km} /$ day $=-.0000047669031 \mathrm{~km} / \mathrm{sec}$. Note that here "km/day" usually refers to a solar day: $24 \mathrm{hours}=86400 \mathrm{sec}$ not a sidereal day.
3.24)They do not specify if it's 1 way to the satellite, or one way Es through sat to Es

One way: a) 0.1333 b) .01 c) 1.282633 seconds
Two way: a) 0.2667 b) . 02 c) 2.565267 seconds
Chapter 6
6.1b) $\mathrm{G}=20^{*} \log (5)+20^{*} \log (4)+10 * \log (.55)+20.4=13.979+12.041-2.596+20.4=43.824 \mathrm{dBi}$
$6.2 \mathrm{~b}) \mathrm{G}=20^{*} \log (3)+20^{*} \log (6)+10 * \log (.55)+20.4=9.542+15.563-2.596+20.4=42.909 \mathrm{dBi}$
6.6) The half beam with is 0.5 degrees so $\theta_{3}=1.0=21 /\left(6^{*} \mathrm{D}\right)$, so $\mathrm{D}=21 / 6=3.5 \mathrm{~m}$

Chapter 7

7.1) $100 \mathrm{~W}=20 \mathrm{dBW} . E I R P=P_{t}-L+G_{t}=20-0+24=44 \mathrm{dBW}$
7.4) $1000 \mathrm{~W}=30 \mathrm{dBW}$. Input to antenna $=\mathrm{P}_{\mathrm{t}}-\mathrm{L}=30-.5=29.5 \mathrm{dBW}$.

EIRP $=P_{t}-L+G_{t}=30-0.5+52=81.5 \mathrm{dBW}$
7.6)

$P(W)$	P (dBW)	Loss		Ant Gain	Ant. Input	EIRP
750	28.75061	0.2	52.1	28.550613	80.65061	
400	26.0206	0.4	49.5	25.6206	75.1206	
1250	30.9691	0.3	58.7	30.6691	89.3691	
700	28.45098	0.5	47.8	27.95098	75.75098	

7.7)

$P(W)$		$P(d B W)$	Backoff	Line loss	Ant Gain	Ant. Input	EIRP
10	10	7	1	30	$\mathbf{2}$	32	
20	13.0103	5	2	28	6.0103	34.0103	
40	16.0206	4	1	35	11.0206	46.0206	
20	13.0103	4	1.5	40	7.5103	47.5103	

7.8) $\mathrm{W}=\mathrm{EIRP}-20^{*} \log (\mathrm{~S})-71=40-20^{*} \log (40000)-71=40-46-71=-77 \mathrm{dBW} / \mathrm{m}^{2}$
7.11) We assume the satellites are GEO (otherwise we can't solve the problem!):

Separation angle $\alpha=359-325.5=33.5^{\circ}$
$\mathrm{S}=2^{*} \mathrm{r}_{\mathrm{g}}{ }^{*} \sin (\alpha / 2)=2 * 42164 * \sin (16.75)=24303 \mathrm{~km}$
$\mathrm{W}=\operatorname{EIRP}-20^{*} \log (\mathrm{~S})-71=20-20^{*} \log (24303)-71=-138.7 \mathrm{dBW} / \mathrm{m}^{2}$ or if you like:
$W=\operatorname{EIRP}-20^{*} \log (\sin (\alpha / 2))-169,5=20+10.8-169.5=-138.7 \mathrm{dBW} / \mathrm{m}^{2}$
7.12) Assuming no other losses, $\mathrm{EIRP}=10^{*} \log (30)+20=34.77 \mathrm{dBW}$
$\mathrm{W}=\mathrm{EIRP}-20^{*} \log (\sin (\alpha / 2))-169,5=34.77+10^{*} \log (\sin (60))-169.5=$ $34.77+1.25-169.5=-133.48 \mathrm{dBW} / \mathrm{m}^{2}$

Chapter 8

8.1) Since we are not given enough info to compute based on rain rate, we must use figure 8.5:

Reading the D2 line at 0.01% gives $\sim 12 \mathrm{~dB}$ of loss
8.4) From fig $8.4 \mathrm{~b} 50 \mathrm{~mm} / \mathrm{hr}$ in region D2 gives an outage $\%$ of $\sim 0.01 \%$. \backslash From fig $8.50 .01 \%$ in region D2 gives $\sim 11 \mathrm{~dB}$ of loss.
8.5) From fig $8.4 \mathrm{a} 25 \mathrm{~mm} / \mathrm{hr}$ in region C gives and outage $\%$ of $\sim 0.015 \%$.

From fig $8.5,0.015 \%$ in region C gives $\sim 5 \mathrm{~dB}$ of loss
8.6) From fig $8.4 \mathrm{~b} 50 \mathrm{~mm} / \mathrm{hr}$ in region D2 gives an outage of $\sim 0.01 \%$. There are $24 * 365=8760 \mathrm{hrs} /$ year
$.0001 * 8760=.876 \mathrm{hrs}=52.56$ minutes. The availability is $100-.01=99.99 \%$
8.8)At $4.2 \mathrm{Ghz}, 40>25=$ b so the ITU limit is $-142 \mathrm{dBW} / \mathrm{m}^{2}$
8.9) At $11.2 \mathrm{GHz}, \mathrm{a}=5<15<25=\mathrm{b}$ so ITU limit is given by
$-150+(\mathrm{h}-5) / 2=-150+(15-5) / 2=-145 \mathrm{dBW} / \mathrm{m}^{2}$
8.10) We assume this is a GEO satellite (or we can't solve the problem....)
a) for clear sky, we take $\mathrm{L}=0 \mathrm{~dB}$ so illumination at edge of coverage is given by $\mathrm{W}=\mathrm{EIRP}-\mathrm{L}-163.4=40-163.4=-123.4 \mathrm{dBW} / \mathrm{m}^{2}$
b) for 99.99% reliability, outage will be 0.01%. "Temperate Maritime" = region C .

From figure $8.5,0.01 \%$ at 12 GHz gives $\sim 7 \mathrm{~dB}$ of loss. So illumination at edge is given by $\mathrm{W}=\mathrm{EIRP}-\mathrm{L}-163.4=40-7-163.4=-130.4 \mathrm{dBW} / \mathrm{m}^{2}$
8.11) Bandwidth is $B=50 \mathrm{MHz}$, and $B_{C C I R}=4000 \mathrm{~Hz}$ so $10^{*} \log (50,000,000 / 4000)=40.97 \mathrm{~dB}$
a) For clear sky: $\mathrm{PFD}=\mathrm{W}-10^{*} \log \left(\mathrm{~B} / \mathrm{B}_{\mathrm{CIIR}}\right)=-123.4-40.97=-164.37 \mathrm{dBW} / \mathrm{m}^{2}$ in 4 KHz Bw
b) For rain : $\mathrm{PFD}=\mathrm{W}-10^{*} \log \left(\mathrm{~B} / \mathrm{B}_{\mathrm{CCIR}}\right)=-130.4-40.97=-171.37 \mathrm{dBW} / \mathrm{m}^{2}$ in 4 KHz Bw

Chapter 9
9.1) Short answer: In the free space loss term, $20^{*} \log (2 * f)=20^{*} \log (f)+6$, so doubling frequency increases free space loss by 6 dB .
Longer answer: In addition to FSL increase above, this will also increase the losses due to rain (for the uplink and downlink). See figure 8.1: at 9 GHz rain is insignificant. At 18 GHz , rain is very significant. It will also increase sky noise due to rain in the downlink: at 9 GHz the sky noise will not substantially increase in heavy rain (since the attenuator will be small for 9 GHz rain) but at 18 GHz , sky noise could increase substantially
9.2) from 9.1 above, doubling frequency adds 6 dB . To get from 6 GHz to 24 GHz we need to double the frequency twice. Thus we add 12 dB to 200 dB and get 212 dB
9.4) At $35788, \mathrm{FSL}=20 * \log (35788)+20 * \log (10)+92.45=91.07+112.45=203.51 \mathrm{~dB}$

At 41679, $\mathrm{FSL}=20^{*} \log (41679)+20^{*} \log (10)+92.45=92.40+112.45=204.85$
Difference is 1.34 dB . Since 35788 is the altitude of a GEO (and, hence the shortest distance from earth to the satellite), AND 41679 is the edge of coverage distance (and, hence the longest distance from earth to the satellite), We have that the path loss cannot vary by more than 1.34 dB regardless of where the earth station is (as long as it is visible to the satellite and we are in clear sky conditions). NOTE NOTE NOTE: This difference is the same REGARDLESS of frequency: you will get the same answer if you change the 10 GHz to any other value.
9.6)This problem is not solvable as stated: they don't give specs for the satellite Rx antenna and the earthstation antenna info is not needed since the EIRP is given. So... let's assume the antenna described is on the satellite. Then
$\mathrm{C}=\mathrm{EIRP}-\mathrm{L}-\mathrm{FSL}+\mathrm{G}$
EIRP $=94 \mathrm{dBW}$ and $L=1 \mathrm{~dB}$
C-band means they are using the 6 GHz band for uplink and the 4 GHz band for downlink. We approximate by using 6 GHz as the uplink frequency (the true value is between 5.7 and 6.3 GHz roughly) FSL $=20^{*} \log (35788)+20^{*} \log (6)+92.45=199.09$
$\mathrm{G}=20^{*} \log (30)+20^{*} \log (6)+10^{*} \log (0.55)+20.4=29.54+15.56-2.60+20.4=62.91$
Thus C $=94-1-199.9+62.91=-43.18 \mathrm{dBW}$

NOTE: you should get the same answer if you assume that we are computing the power received at the earthstation if it is using the 30 m antenna described and the satellite is transmitting at an EIRP of 94 dBW . Note however that you would need to use 4 GHz as the frequency in both the FSL and Gain equations but the differences would cancel out...
9.7) You can use eqn 9.9.... or you could derive the value:
$S=2 * r_{g}{ }^{*} \sin (\alpha / 2)$
$\mathrm{L}=20 * \log (\mathrm{f})+20 * \log \left(2 * r_{\mathrm{g}} * \sin (\alpha / 2)\right)+92.45=20 * \log (f)+20 * \log (2 * 42164)+20 * \log (\sin (\alpha / 2))+92.45=$
$20 * \log (23)+20 * \log (\sin (0.01 / 2))+190.97=27.23-81.18+190.97=137.02 \mathrm{~dB}$
9.10) in linear: $G_{\text {linear }}=4 \pi A \eta / \lambda^{2}=A \eta * G_{1 m}{ }^{2}$ linear so the ratio will be $A \eta$ in linear.
$A \eta=\pi(15 / 2)^{2}(.55)=97.19=19.88 \mathrm{~dB}$
9.11) $\mathrm{W}=\operatorname{EIRP}-20^{*} \log (\mathrm{~S})-71=40-20^{*} \log (40000)-71=-123.04 \mathrm{dBW} / \mathrm{m}^{2}$. The Rx antenna information (diameter and efficiency) is superfluous.
9.12) From eqn 9.9 (or the derivation above in exercise 9.7) $\mathrm{L}=20 * \log (\mathrm{f})+20 * \log (\sin (\alpha / 2)+190.97$
$=20^{*} \log (20)+20^{*} \log (\sin (60 / 2))+190.97=210.97$
9.13) In linear $N=k B T$. So in $d b$:
$\mathrm{N}=-228.6+10^{*} \log (\mathrm{~B})+10^{*} \log (\mathrm{~T})$
For $10 \mathrm{kHz}: \mathrm{N}=-228.6+40+20=-168.6 \mathrm{dBW}$
For $10 \mathrm{MHz}: \mathrm{N}=-228.6+70+20=-138.6 \mathrm{dBW}$. There is a 30 dB difference.
9.14)
$N F=1.5 \mathrm{~dB}$ means the linear noise figure $\mathrm{F}=1.4125=1+T_{R X} / T_{R}$
So $T_{R X}=290 *(.4125)=119.6 \mathrm{~K}$. so the LNA with the 100 K noise temperature is better.
9.17) For each G / T, we look at each LNA and compute the required antenna area. From there we get the cost of the antenna and LNA combination. We are given the frequency $f=4 \mathrm{GHz}$ and we assume the efficiency is 0.55 . We compute as follows:
For a given G / T and a given LNA , compute the required antenna gain to get that $\mathrm{G} / \mathrm{T}: \mathrm{G}=\mathrm{G} / \mathrm{T}-10 * \log T$.
Next compute the required diameter of the antenna: $20^{*} \log (D)=G-20^{*} \log (f)-10^{*} \log (.55)-20.4$
Next compute the area as $A=\pi^{*} D^{2} / 4$. We get the total cost as $A * \$ 100+$ cost of LNA:

G/T	20		freq	4		efficiency Area	0.55
	Cost	Temp	Required G	$20 \log (\mathrm{D})$	D		Total Cost
LNA 1	\$200	30	34.77121255	4.926386	1.763272	2.441903	\$444.19
LNA 2	\$100	35	35.44068044	5.595854	1.904551	2.848887	\$384.89
LNA 3	\$50	60	37.7815125	7.936686	2.493643	4.883807	\$538.38
G/T	35						
	Cost	Temp	Required G	$20 \log (\mathrm{D})$	D	Area	Total Cost
LNA 1	\$200	30	49.77121255	19.92639	9.915607	77.21976	\$7,921.98
LNA 2	\$100	35	50.44068044	20.59585	10.71008	90.08972	\$9,108.97

$\begin{array}{lllllllll}\text { LNA } 3 & \$ 50 & 60 & 52.7815125 & 22.93669 & 14.02279 & 154.4395 & \$ 15,493.95\end{array}$
Note the best choice for $\mathrm{G} / \mathrm{T}=20 \mathrm{~dB}$ is the 35 K LNA but the best choice for $\mathrm{G} / \mathrm{T}=35$ is the 30 K LNA For fun: can you find a G/T for which the 60K LNA will be the best choice?
9.18) This problem is similar to 9.17 however we can't know the skynoise value before we solve the problem. Thus we must solve it with both values of skynoise and then choose the one that applies. The calculations will be the same as 9.17 except now to compute the required gain we take $\mathrm{G}=\mathrm{G} / \mathrm{T}+10^{*} \log (\mathrm{~T}+$ skynoise $)$

G/T	25		freq	10		eff	0.7
sky noise	30						
	Cost	Temp T	Required G	20log(D)	D	Area	Total Cost
LNA 1	$\$ 100$	100	46.139434	7.288453	2.314	4.2066	$\$ 520.66$
LNA 2	$\$ 75$	150	47.552725	8.701745	2.723	5.8246	$\$ 657.46$
LNA 3	$\$ 30$	170	48.0103	9.15932	2.871	6.4718	$\$ 677.18$

sky noise	50						
LNA 1	$\$ 100$	100	46.760913	7.909932	2.486	4.8538	$\$ 585.38$
LNA 2	$\$ 75$	150	48.0103	9.15932	2.871	6.4718	$\$ 722.18$
LNA 3	$\$ 30$	170	48.424227	9.573246	3.011	7.1189	$\$ 741.89$

Since all the antenna diameters are >1m the sky noise will be 30K. The best case is the 100K LNA.
9.19) The noise temperature of the receiver affects all the beams, so $G / T=50 \mathrm{dBi}-30 \mathrm{dBK}=20 \mathrm{dBi} / \mathrm{K}$.

Chapter 10
10.1) C / N for $\mathrm{UL}=28 \mathrm{~dB}=631$ in linear. C / N for the $\mathrm{DL}=15 \mathrm{~dB}=31.6$ in linear.
C / N total $=1 /(1 / 631+1 / 31.6)=30.11=14.78 \mathrm{~dB}$ (answer c$)$. NB if you are clever, you could have guessed c correctly by noticing that a and d are bigger than the $\mathrm{DL} \mathrm{C} / \mathrm{N}$ hence ridiculous, and then noticing that 28 is 13 dB better than 15, hence the UL will only degrade the value below the DL by about 5% in linear... not much :-)
10.3) Lets compute the orbital parameters first, then deal with the RF. We need the elevation angle (because it's requested) AND the distance S (to get the FSL requested). Sat longitude $=330 \mathrm{E}$ ES longitude = $12 \mathrm{E} . \Delta \lambda=330-12=318$ degrees. ES longitude $=59 \mathrm{~N}$. So $\cos \left(\beta_{0}\right)=\cos (318) * \cos (59)=0.387247$, so $\beta_{0}=67.496$ degrees. So $h=\operatorname{atan}\left(\left(\cos \left(\beta_{0}\right)-R_{e} / r\right) / \sin \left(\beta_{0}\right)\right)=$ $\operatorname{atan}(0.25056)=14.066$ degrees. $S=\left(R_{e}{ }^{2}+r^{2}-2 * R_{e}{ }^{*} r^{*} \cos \left(\beta_{0}\right)\right)^{1 / 2}=40157.479 \mathrm{~km}$

Now:
$5000 \mathrm{~W}=37 \mathrm{dBW}$ is the power output of the Tx. The gain of the Tx antenna is
$\mathrm{G}=20^{*} \log (6)+20^{*} \log (18)+10^{*} \log (.6)+20.4=58.85 \mathrm{dBi}$ So:
EIRP $=37-2+58.85=93.85 \mathrm{dBW}$. NB they are careful to distinguish between waveguide losses (that count toward the EIRP) and path losses (that do not affect EIRP but will decrease C/T).
FSL $=20^{*} \log (6)+20 * \log (40157.479)+92.45=200.09 \mathrm{~dB}$
So RSL before the receive antenna $=$ EIRP - FSL $-L=58.85-200.09-3=-144.24 \mathrm{dBW}$
So $C / T=-144.24-8.6=-152.84 \mathrm{dBW} / \mathrm{K}$

The antenna beamwidth is give as $21 /(\mathrm{fD})=21 /\left(18^{*} 6\right)=0.194$ degrees
10.5) As with 10.3 above we do the orbital mechanics first and the RF second.

Sat long $=330 E$, ES long $=12 E$, ES lat $=32 N$. So $\Delta \lambda=330-12=318$ degrees.
So $\cos \left(\beta_{0}\right)=\cos (318)^{*} \cos (32)=0.387247$, so $\beta_{0}=50.933$ degrees. So $h=\operatorname{atan}\left(\left(\cos \left(\beta_{0}\right)-R_{e} / r\right) / \sin \left(\beta_{0}\right)\right)=$ $\operatorname{atan}(0.61688)=31.66968$ degrees. $S=\left(R_{e}{ }^{2}+r^{2}-2 * R_{e}{ }^{*} r^{*} \cos \left(\beta_{0}\right)\right)^{1 / 2}=38464.534 \mathrm{~km}$

Now FSL $=20 * \log (4)+20^{*} \log (38464.534)+92.45=196.19 \mathrm{~dB}$
Actual EIRP $=31-8=23 \mathrm{dBW}$ So
$\mathrm{C} / \mathrm{T}=\mathrm{EIRP}-\mathrm{FSL}-\mathrm{L}+\mathrm{G} / \mathrm{T}=23-196.19-3-8.6=-184.79 \mathrm{dBW} / \mathrm{K}$
$\mathrm{C} / \mathrm{N}_{0}=-184.79+228.6=43.81 \mathrm{dBHz}$
10.6) W at edge of coverage will be given by $W=E I R P-L-20^{*} \log (42164)-71$ which doesn't change with frequency. So:

frequency	edge S	FSL edge	W edge	sat	FSL subsat
6	41679	200.41137	-80.3983	35786	199.08729
14	41679	207.77091	-80.3983	35786	206.44682

10.7) This is a little tricky since $325.5 \mathrm{E}-60 \mathrm{E}=265.5$ degrees. But this is silly since we want to go the other way around the earth. So $325.5 \mathrm{E}=-34.5 \mathrm{E}$. Now $60-(-34.5)=94.5$ degrees which makes more sense. Now from table 10.3:
$\mathrm{FSL}=20^{*} \log (\sin (\alpha / 2))+20 * \log (f)+190.97=20 * \log (\sin (47.25))+20 * \log (30)+190.97=217.86$
$W=\operatorname{EIRP}-L_{\text {add }}-20^{*} \log (\sin (\alpha / 2))-169.52=25-20^{*} \log (\sin (47.25)-169.52=-141.84$
10.8) $C / N=20 d B=100$ linear. $C / I=15 d B=31.62$ linear.
$C /(N+I)=1 /(0.01+1 / 31.62)=1 /(.04162)=24.0253$ linear $=13.81 \mathrm{~dB}$
10.9) Intermod C / T values add like additional interference so the combined C / T value is given by $C / T=10^{*} \log \left(1 /\left(10^{14.52}+10^{15.62}+10^{14.81}\right)\right)=-157.71 \mathrm{dBW} / \mathrm{K}$
10.10) In each case the UL C/T is at least 10 dB higher than the $\mathrm{DLC} / \mathrm{T}$ (more than 20 dB in the first 3 columns). This means the comparatively there is very little noise in the UL so the total noise is dominated by the DL noise. Consider : if $C / T d=X$ and $C / T u=10+C / T d=X+10$ then, $10^{*} \log \left(1 /\left(10^{-x}+10^{-x-10}\right)\right)=10^{*} \log \left(1 /\left(1.1^{*} 10^{-x}\right)\right)=X-10^{*} \log (1.1)=X-0.4 \mathrm{~dB}$ which is not much of a change... (If there's a 20 dB difference between UL and DL, there will be only .04 dB in total C / T)
10.11)
a) $\mathrm{C} / \mathrm{N}=10^{*} \log \left(1 /\left(10^{-3.21}+10^{-3}\right)\right)=10^{*} \log (1 /(0.001616595))=10^{*} \log (618.584)=27.914 \mathrm{~dB}$
b) $-160.0=10^{*} \log \left(1 /\left(10^{15.4}+10^{-x}\right)\right)$ So: $10^{-16}=1 /\left(10^{15.4}+10^{-x}\right)$ So: $10^{16}=10^{15.4}+10^{-x}$

So: $10^{-\mathrm{X}}=10^{16}-10^{15.4}=7.48811 \times 10^{15}$ so $\mathrm{X}=-158.74=(\mathrm{C} / \mathrm{T})_{\mathrm{d}}$
c) $C / N_{0}=C / T+228.6=228.6-160=68.6$ From Eqn 9.38: $E_{b} / N_{0}=C / N_{0}-10 * \log (R)=68.6-50=18.6$
d) $P=(1 / 2) \exp (-18.6)=4.18 \times 10^{-9}$
10.12) For this problem we run the link budget backwards:
$\mathrm{C} / \mathrm{N}_{0}=\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}+10^{*} \log (\mathrm{R})=5+10^{*} \log (125000)=55.969 \mathrm{dBHz}$
$\mathrm{C} / \mathrm{T}=\mathrm{C} / \mathrm{N}_{0}-228.6=-172.63$
FSL at max distance $=20 * \log (3.8)+20 * \log (41679)+92.45=196.44$
EIRP $=\mathrm{C} / \mathrm{T}+\mathrm{FSL}-\mathrm{G} / \mathrm{T}=-172.63+196.44-22=1.814 \mathrm{dBW}$
Assuming an efficiency of 0.55 , the gain of the transmitting antenna is
$\mathrm{G}=20^{*} \log (3.8)+20 * \log (.1)+20^{*} \log (.55)+20.4=9.4 \mathrm{dBi}$ So the transmitter power is
PTx $=1.814-9.4=-7.585 \mathrm{dBW}$
10.13) Saying the satellite beam pattern is the same across the earth means that, effectively, every place on earth will see the same EIRP. At edge of coverage we have:
$\mathrm{W}=\mathrm{EIRP}-20^{*} \log (41679)-71.0=-143.0 \mathrm{dBW} / \mathrm{m}^{2}$ Thus:
EIRP $=20.4 \mathrm{dBW}$. Now at the subsatellite point:
$\mathrm{W}=20.4-20^{*} \log (35786)-71.0=-141.7 \mathrm{dBW} / \mathrm{m}^{2}$ which is $6.76 \times 10^{-15} \mathrm{~W} / \mathrm{m}^{2}$
So there is a difference of 1.3 dB between the illumination at the subsatellite point and at the edge of coverage. Therefore, I can use a lower gain antenna at the subsatellite point to get the same C / N The gain of the antenna at the subsatellite point can be 1.3 dB less than at the edge of coverage.
$\mathrm{G}=20^{*} \log (\mathrm{D})+20^{*} \log (\mathrm{f})+10 * \log (.6)+20.4$
But assuming the antenna has the same efficiency and is operating at the same frequency, the only thing I'm changing is D. At the edge of coverage:
$20^{*} \log (\mathrm{D})=20^{*} \log (2)=6$
So at the subsatellite point I only need:
$20 * \log (D)=4.7$
Thus: $\mathrm{D}=1.718 \mathrm{~m}$
10.16) If you use the narrowband transponders you can transmit at the saturated EIRP. If you use the broadband $(72 \mathrm{MHz})$ transponder, you will need to back off the power to avoid intermodulation between to two carriers. Thus the best solution is the 2 narrowband transponders
10.17) This is a 2 part problem: first you must see if you have enough bandwidth. Then you must see if you have enough power.
For bandwidth, you are currently consuming: $2 \times 10+3 \times 2+10 \times 0.08=26.8 \mathrm{MHz}$ out of 36 so you have 9.4 MHz left which is enough room for 4 additional 2 MHz carriers.

For power: your available power is $37-7=30 \mathrm{dBW}=1000 \mathrm{~W}$
The two 10 MHz channels consume $15 \mathrm{dBW}=31.6 \mathrm{~W}$ each
The three 2 MHz channels consume $20 \mathrm{dBW}=100 \mathrm{~W}$ each
The 1080 KHz channels consume $12 \mathrm{dBW}=15.8 \mathrm{~W}$ each
So the total is $2 \times 31.6+3 \times 100+10 \times 15.8=521.2 \mathrm{~W}$ total so you have 478.8 W left
Which means you can power up to 4 additional 2 MHz carriers.

NB: you have more than enough bandwidth to accommodate 100 more 80 KHz channels, but only enough power for ~ 30 or so. Also you have enough power to accommodate ~ 15 of the 10 MHz channels but not enough bandwidth for even one more!

