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Abstract

Preventive Maintenance (PM) scheduling is a very challenging task in semiconductor manufacturing,

due to the complexity of highly integrated fab tools and systems, the interdependence between PM tasks,

and the balancing of Work-In-Process (WIP) with demand/throughput requirements. In this paper, we

propose a two-level hierarchical modeling framework. At the higher level is a model for long-term

planning, and at the lower level is a model for short-term PM scheduling. Solving the lower level

problem is the focus of this paper. We develop mixed integer programming (MIP) models for scheduling

all due PM tasks for a group of tools, over a planning horizon. Interdependence among different PM

tasks, production planning data such as projected WIP levels, manpower constraints, and associated

PM time windows and costs, are incorporated in the model. Results of a simulation study comparing

the performance of the model-based PM schedule with that of a baseline reference schedule are also

presented.

Index Terms

preventive maintenance, scheduling, mixed integer programming, time-window policies, cluster

tools.

I. INTRODUCTION

The reliability of equipment in semiconductor manufacturing fabs has become an important

issue in yield improvement, cost reduction, and cycle time reduction. The fabrication equipment

is extremely sophisticated and costly, requiring extensive calibration and preventive maintenance

(PM). A good PM plan can increase equipment availability by trading off between “planned”

unproductive downtime (due to PM) and the risk of much costlier “unplanned” downtime (due

to equipment failure), which can cause major disruptions in the manufacturing process. Thus,

in order to maximize the profits from fab operations, PM tasks have to be scheduled carefully

and comprehensively.

However, PM scheduling in semiconductor fabs has long been seen as a very hard problem

[1], [2]. Two distinguishing features of semiconductor fabs make PM scheduling a particularly

challenging task. First, a semiconductor fab is a highly integrated system that involves many

different types of equipment and up to several hundred processing steps for each wafer. These

equipment (also called tool) are highly coupled by re-entrant wafers and processing steps. A PM

schedule on one tool can have significant impact on upstream or downstream tools if maintenance
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is scheduled poorly. Second, many new advanced techniques have been deployed in fabs, such

as the wide use of cluster tools. A cluster tool is a highly integrated machine that is composed

of several chambers and robots, where different PM tasks on different chambers have to be

coordinated carefully in order to maximize the availability (therefore throughput) of the entire

tool.

For example, even the PM scheduling for a work center, in isolation, that consists of a group of

cluster tools turns out to be quite complicated, as each cluster tool has several chambers, and each

chamber has several different PM tasks that have to be performed. To improve the availability of

the entire tool requires coordination of PM tasks in different chambers, because the entire tool’s

availability is dependent on the status of each chamber. In addition, fab production data such as

Work-In-Process (WIP) should be considered in PM scheduling. For instance, PM tasks should

be avoided if possible during periods when a significant amount of work is expected to arrive

soon. It would be wise to “pull” or “push” a planned PM task beyond a certain period under

such circumstances. Hence, PM tasks should be scheduled by looking ahead at both the effect

from WIP and the impact on WIP. In addition, it may be advantageous sometimes to consolidate

PM tasks, e.g., doing one task “early” when a tool or chamber is brought down for another task.

Costs for supplies and lost production, as well as technician availability constraints, should also

be accounted for.

It is obvious that the uncertain (stochastic) nature of WIP and tool failures, and the in-

terdependence of PM tasks in fabs, require new models to be developed to deal with these

complicated situations. Unfortunately, there do not appear to be such models readily applicable

to PM scheduling problems. On the other hand, there are enormous amounts of data in the fab

databases readily available to modelers and planners; yet most of this potential goes unutilized.

We argue that a decomposition approach can be employed for the problem of optimal PM

scheduling. Specifically, a two-level hierarchical modeling framework is proposed. At the higher

level, a planning model captures both the failure processes and the demand pattern, and can

be used to derive optimal PM planning policies for the long-term horizon. At the lower level,

a scheduling model, accepting as one input optimal policies from the higher level, takes into

consideration the interdependence among PM tasks and resources constraints (e.g., headcount

of maintenance technicians), and is used to determine the optimal time to do PMs for short-

term operations. Following standard practice in industry, PM tasks are scheduled within a given
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nominal window, e.g., 14 days after the last PM, plus or minus 1 day. The scheduling model is

formulated as a mixed integer programming (MIP) model, and is the main focus of this paper.

The work presented here is part of a comprehensive effort at developing models, algorithms

and software tools for PM scheduling. Significant interaction with many semiconductor manu-

facturing companies has taken place to date, primarily within the joint Semiconductor Research

Corporation (SRC) and International SEMATECH (ISMT) “Factory Operations Research Center”

(FORCe) program.

The main contributions of this paper are two-fold. First, we propose a systematic approach

to the PM planning and scheduling problem in semiconductor manufacturing, i.e., the two-

level hierarchical modeling framework, which is applicable to real situations in fabs. Second,

we develop a mixed integer programming model for optimal PM scheduling in fabs. These

solutions are applicable for all tool groups in a fab, but higher impact is to be expected when

purely ad hoc scheduling may be too complex to handle, e.g., for cluster tools. In general, given

their optimization base, our solutions can be a significant aid for (human) decision makers to

rule out errors and oversights.

The remainder of the paper is organized as follows. Section II contains a brief literature

review on PM models and scheduling. Section III introduces the hierarchical PM planning

and scheduling framework. The MIP model for the PM scheduling problem is developed and

discussed in section IV, with more technical details provided in the Appendix. The simulation

study is contained in Section V. Finally we provide some concluding remarks.

II. LITERATURE REVIEW

Preventive maintenance theory has a well-established body of literature. Many maintenance

models have been developed and applied in manufacturing systems. The survey papers [3], [4],

[5], [6] provide a wide range of models describing the degrading process of equipment, cost

structure and admissible maintenance actions. In general, the underlying stochastic processes

can be modeled as a Markov chain or semi-Markov process. Normally, the cost structure could

include inspection cost, preventive replacement cost, failure replacement cost, repair cost, and

operation cost. One important result about optimal policies derived from these models is that

they are often of the “control limit” form; for a general treatment, see [7]. For example, the

well-known age-dependent PM policy is such a control limit policy, i.e., if machine’s age is
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beyond a limit, then it is optimal to do PM; otherwise do not perform PM.

Along with the development of maintenance models for single-unit systems, some work has

been directed to multi-component (multi-unit) maintenance models, where several machines

are stochastically or economically dependent on each other; see the survey paper [5] and the

references therein. Most of these efforts have been focused on group/block or opportunistic

maintenance models that make use of economies of scale to perform preventive replacement upon

the failure of one unit, or on the investigation of the effect of repairmen/spare parts inventory

on maintenance policies.

Traditionally, PM modeling has concentrated on utilizing data solely on the reliability of

individual machines. However, this approach is not well suited for interdependent systems, such

as modern semiconductor manufacturing fabs, which are characterized by high interdependence

among different tools. Traditional methods have ignored the fact that each tool is only a part

of the whole production system, and so the entire state of the system, such as the operating

status of upstream or downstream tools, as well as buffer levels, has significant impact on PM

scheduling for that tool and should be considered in order to achieve maximal overall equipment

effectiveness.

Van der Duyn Schouten and Vanneste [8] investigate an integrated maintenance-production

problem, in which the preventive maintenance policy is based not only on the information about

the age of the device, but also on the level of the downstream buffer. Meller and Kim [9] consider

a similar production-inventory system with two machines connected by a finite buffer between

them, where the objective is to determine the optimal buffer level that triggers PM. Das and

Sarkar [10] consider a joint (s, S) inventory and failure-prone production system, and study PM

policy based on the inventory level and the number of products made since last maintenance.

However, there are very few papers on PM scheduling under the specific context of semicon-

ductor manufacturing. Recently, Mosley et al. [11] study maintenance dispatching and staffing

policies for a group of fabs sharing maintenance resources. López and Wood [12] study the

impact of configuration and maintenance policies on the performance of systems of cluster

tools.

In semiconductor manufacturing, hierarchical planning and scheduling for maintenance ac-

tivities is common practice. On the higher level, the PM frequency, or interval between two

consecutive PM windows, is planned first, and on the lower level, each PM can be scheduled
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within a window. For example, a calendar window for a PM task can be given as “14 days ±

1 day”. Hence, 13-14-15 days since last PM would be, respectively, the warning-due-late dates.

Although this is common in semiconductor manufacturing and in many other applications as

well, this type of hierarchical PM scheduling structure has not been addressed formally until

very recently.

The recent work by van Dijkhuizen and van Harten [13] closely resembles our proposed

hierarchical framework. They study a two-stage maintenance policy, where the first stage is

related to the higher level, with the objective to determine a time window, and the second stage

is related to the lower level to determine the actual start time of a PM within the time interval.

However, the problem setting is just for a single PM on one tool. Besides, they assume the time

for a PM is negligible.

The value of consolidation of different PM tasks, e.g., for cluster tools, is commonly recognized

in semiconductor manufacturing; yet it has not been addressed in a rigorous way in the literature.

One study of the problem of grouping maintenance activities, which doesn’t consider production

costs, is conducted by Wildeman et al. [14], in a generic problem setting. They consider a multi-

component system where preventive maintenance activities can be carried out on each component

with a system-dependent cost, which is same for all activities, and a component-dependent cost.

It is desirable to group maintenance activities since execution of a group of activities requires

only one setup. A rolling horizon dynamic policy for grouping PMs is developed.

III. HIERARCHICAL PM PLANNING AND SCHEDULING FRAMEWORK

In this section, after a discussion of the problem background, we present our proposed

two-level hierarchical modeling framework for PM planning and scheduling in semiconductor

manufacturing.

A. Background

Our proposed hierarchical framework was motivated by discussions with operation analysts

and tool group managers in semiconductor manufacturing fabs. Although our proposed solutions

are applicable to all tool groups in a fab, those groups with highly complex and interdependent

PM tasks, and high utilization rates would clearly be most positively impacted. Commonly,

groups with cluster tools fall in the latter category, and we focus on these to illustrate our
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subsequent presentation. Cluster tools are highly integrated machines that can perform a sequence

of semiconductor manufacturing processes. A general configuration of a cluster tool includes

several processing chambers, load/unload locks, and transfer robots.

The scheduling of preventive maintenance for cluster tools is very complicated. To begin

with, there are various PM activities on each component of the cluster tool. Roughly, they can

be categorized into two types of PMs: calendar-based and operation-based. A calendar-based

PM must be performed at some interval of calendar time, e.g., every 7, 14, 30, 90, 180 or

360 days. For an operation-based PM, the interval between two consecutive tasks is determined

by the tool’s operation history, which can be characterized by either wafer-count or cumulative

operating time since the last PM. For example, for each processing chamber, a kit change is

supposed to be undertaken at every specified number of wafers produced since the last PM. The

vast majority of PM policies follow a “generalized age replacement” structure, in which a PM

is scheduled for a time after a tool’s “age” exceeds some threshold, but there is flexibility on the

actual start time within some associated interval. Here, “age” means calendar-time or operation

history, according to the type of PM. In semiconductor manufacturing practice, this is often

called a “PM window” policy, where such a window is associated with each PM task. Even

if a PM window is operation-based, e.g., “2000 wafers ± 10%” since last PM, tasks must be

scheduled on a calendar basis, e.g., work shift and day. Furthermore, if an optimization model

were to track wafer count, this would lead to a very high level of computational complexity, and

scheduling decisions of the form “schedule PM task A at 1,860 wafer count”, which would need

to be converted to an equivalent calendar date. For these reasons, our models and algorithms

operate on a calendar base, and PM window specifications are assumed to be given on this base.

Converting operation-based data to equivalent calendar dates is commonly handled in ad hoc

ways in practice. Efficient methods and algorithms have also been developed recently [15].

Another complexity in PM scheduling is due to the fact that there are several key factors

affecting the decision-making process. First of all, careful coordination of PM tasks in different

chambers is required in order to improve the entire tool’s throughput. Usually, it is advantageous

to consolidate PM tasks when another PM is planned on the near horizon, or tools are shut down

due to unexpected events. Second, WIP has to be considered in the PM schedule. For example,

it would be ideal to do PM in a period when WIP is low, and not to do PM in a period of high

WIP or when many lots of wafers are scheduled to arrive. Finally, resource constraints such as
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Fig. 1. Two-level hierarchical modeling framework for PM planing and scheduling

the headcount of maintenance technicians for the entire tool group of interest have to be taken

into consideration, since manpower is usually the most critical constraint in PM scheduling.

In view of the complexity of PM scheduling in semiconductor manufacturing systems, we

propose a two-level hierarchical modeling structure that can be applied to obtain “optimal”

PM schedules from computationally tractable models. A similar idea is mentioned in [16], but

without further development. Our hierarchical modeling framework is illustrated in Fig. 1, and

we explain below the components of this framework.

B. PM Planning Model

The purpose of the PM planning model is to derive optimal policies for individual PMs. One

candidate for such a policy could be an optimized time-window policy. Apart from conventional

PM models [3], [4], [5], which include only the system’s “technical” state information, i.e.,

deterioration degree or age of machines, our proposed PM planning models consider explicitly the

system’s “operating” states and “technical” states simultaneously. In the context of semiconductor

manufacturing, the system’s “operating” information, e.g., demand pattern, is as important as

the system’s “technical” information.

The planning model takes tool (stochastic) failure processes and incoming (stochastic) demand

processes together with appropriate system objective functions as model inputs, and is formulated
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as a Markov Decision Process (MDP) [17]. MDP methodology is a natural choice to deal with this

type of problems, due to the feature of underlying stochastic processes and sequential decision

epoches.

Under the hierarchical framework, the information about interdependence of PM tasks and

resource constraints will be ignored intentionally in the planning model, and be left to the lower

scheduling model.

C. PM Scheduling Model

Given the optimal policy, the scheduling model will determine the best time to do a PM by

considering other factors that have been ignored in the PM planning model. For example, in

the context of cluster tools, the scheduling model will consider the interdependence of different

PM tasks in terms of their joint impact on the entire tool’s throughput, as well as the match

up between the tool’s availability and projected incoming WIP. The scheduling model obtains

optimal PM schedules, under some objective function and resource constraints. The scheduling

model is formulated as a mixed integer program and is described in detail in the next section.

IV. MIXED INTEGER PROGRAMMING OF PM SCHEDULES

A mixed integer programming model for PM scheduling for a group of tools is presented in

this section. Specific issues on solving the MIP model and its software implementation will then

be discussed.

A. Problem Definition

We consider PM scheduling for a group of tools. As explained in Section III-A, we assume

all PM tasks are calendar-based. For the sake of generality, we give our presentation below in

terms of cluster tools, keeping in mind that non-clustered tools can be viewed as single chamber

tools for purpose of our model. Moreover, tools with coupled operations, e.g., litho steppers and

trackers, should be modeled as a single tool with two chambers (in series).

Now consider a group of M cluster tools. The indexing of PM tasks for tool i is from 1 to

ρi, where ρi is the total number of PM tasks applicable to tool i. For each cluster tool, the joint

impact of PM tasks on its relative throughput, defined with respect to a fully operational tool,

is characterized through a so-called “configuration matrix”. Table I illustrates such a matrix,
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which defines availability of tool as a function of its chamber statuses. Each row represents a

scenario of chambers along with the corresponding availability of the entire tool. For example,

the first row represents the scenario when all chambers 1 to 5 are up, indicated with “1”, and

so its availability is by definition 100%. The second and third rows represent the scenarios

when either Ch1 or Ch2 is shut down, indicated with “0”, for PM, respectively, with relative

availability of only 60%. However, the 4th row shows that relative availability is 0 when both

Ch1 and Ch2 are down at the same time, regardless of the status of all other chambers (indicated

with “X”). This suggests that each wafer likely has to go through either Ch1 or Ch2, so when

both chambers are down, no wafers can be processed. This also indicates that it is unwise to

consolidate PM tasks for Ch1 and Ch2. Similarly, the last row suggests that each wafer has to

go through Ch3, and so when it is down, there is no throughput, and its availability is therefore

0.

Similar to the “configuration matrix”, a table describing resource requirements will list the

resources required and duration for each PM and any consolidated PMs.

Now, given a set of PM tasks that need to be scheduled on these tools in a scheduling horizon,

with each PM task associated with a time window in which the PM has to be started, the problem

is to determine the best time for doing each PM, with the objective of maximizing overall tool

availability and minimizing WIP, under some resource or operation constraints.

We formulate below the problem as an MIP model.

B. MIP formulation

Let t denote a generic time period, or PM decision epoch, and T the planning horizon; hence

t = 1, . . . , T. For example, time could be divided in periods of one work shift or one day, and the

planning period could be two weeks, i.e., T = 42 shifts (assuming 3 shifts per day) or T = 14

days, respectively. The notation used throughout the paper is summarized in the following.

1) Indices

i: tool

l: PM task

t: time unit

j: resource type

2) Decision variables
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TABLE I

CONFIGURATION MATRIX FOR A CLUSTER TOOL (LEGEND: 0: DOWN; 1: UP; X: IRRELEVANT)

Ch1 Ch2 Ch3 Ch4 Ch5 Availability

1 1 1 1 1 100%

0 1 1 1 1 60%

1 0 1 1 1 60%

0 0 X X X 0%

1 1 1 0 1 80%

1 1 1 1 0 80%

X X X 0 0 0%

1 0 1 1 0 60%

1 0 1 0 1 60%

0 1 1 1 0 60%

0 1 1 0 1 60%

X X 0 X X 0%

ali(t): binary decision variables for PM task l on tool i in period t, (1: do PM; 0: do

not do PM). Define ai(t) = [a1
i (t) a2

i (t) . . . aρi

i (t)]
T , the decision vector for all

PM tasks on tool i.

Vi(t): availability of tool i in period t.

Ii(t): workload level (total in buffer and in process) for tool i in period t.

3) Parameters

M : number of tools considered

T : number of time units in the planning horizon

N : number of resource types considered

ρi number of PM tasks on tool i

wl
i, u

l
i: time window [min, max] associated with PM task l on tool i.

ki: number of periods for the PM task with the longest duration on tool i.

di(t): projected incoming WIP for tool i in period t.
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bi: profit coefficient for availability of tool i.

cIi : cost coefficient for inventory on tool i.

cli: PM cost for performing PM task l on tool i.

Li: WIP buffer size for tool i.

Ki: coefficient of wafer throughput for tool i’s availability.

fi(·): availability function for tool i; constructed from the “configuration matrix”, e.g.,

Table I.

rji (·): resource function calculating the requirement of resource type j for tool i, j =

1, . . . , N ; constructed from a resource requirement matrix.

Rj(t): amount of resource type j available in period t, j = 1, . . . , N .

Our model is then given as follows.

Model MIP1: max
T
∑

t=1

M
∑

i=1

(

bi · Vi(t)− cIi · Ii(t)−
ρi
∑

l=1

cli · a
l
i(t)

)

(1)

subject to:

ul

i
∑

t=wl

i

ali(t) = 1, for those PM tasks that have to be finished

in the time window [wl
i, u

l
i] ⊆ [1, T ]. (2)

Vi(t) = fi (ai(t), ai(t− 1), . . . , ai(t− (ki − 1))) ,

for i = 1, · · · ,M ; t = 1, · · · , T ; ai(t) = 0, for t ≤ 0. (3)

Rj(t) ≥
M
∑

i=1

rji (ai(t), ai(t− 1), . . . , ai(t− (ki − 1))) ,

for t = 1, · · · , T ; j = 1, · · · , N ; ai(t) = 0, for t ≤ 0. (4)

Ii(t + 1) = (Ii(t)−Ki · Vi(t) + di(t))
+ , for i = 1, · · · ,M ; t = 1, · · · , T − 1. (5)

Ii(t) ≤ Li, for i = 1, · · · ,M ; t = 1, · · · , T. (6)

On (5), the operation (·)+ is defined as (x)+ = max(0, x). The objective is to maximize

profits from tool availability, minus costs from inventory build-up and performing the PM tasks.

Equation (2) states that the scheduled PM tasks have to be performed within their individual

time windows. Equation (3) computes the availability for each tool for each time period. A

particular sequence of ai(t), ai(t − 1), . . . , ai(t − (ki − 1)), determines a particular row of the
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“configuration matrix” and the value of fi(·) would be the corresponding value of availability

for that row. Equation (4) states that for each type of resource the sum of resource requirement

over all tools must be less than available resource in each period. Equation (5) describes the

WIP dynamics for each tool, and implies that for each tool i, it would produce as many wafers

as possible, using all availability at hand, if there is enough in-buffer WIP; otherwise it would

produce wafers matching up with the in-buffer WIP. Equation (6) states that the WIP level of

tool i should not exceed its buffer size at any time.

Model parameters such as bi, c
I
i , c

l
i, Li, R

j, Ki, etc., are fab specific data, and can be obtained

from fab operations. Specifically, the profit coefficient bi could be determined as follows. First,

for each tool i, we compute the wafer throughput per time unit (shift or day) assuming the tool

is 100% available. Second, multiplying this by the average added value per wafer due to the

operations on tool i, we obtain an estimated bi. However, the cost coefficient cIi is relatively

more difficult to compute, but could be determined by tool owners on the basis of how much

impact a high WIP level would have on the performance of the fab. If the WIP level is not

considered critical when below some threshold, then cIi can be set to zero.

In the above formulation, without loss of generality, we have assumed that during the schedul-

ing horizon, each PM is performed at most one time on each tool, as reflected in Equation (2).

This assumption does not affect PM tasks of the same type performed on different chambers,

because they should have been indexed differently due to their association with different cham-

bers. In the case when the same type of PM needs to be scheduled more than once for the same

tool during the horizon, different indices should have been assigned to them, so that they will

be treated as different PMs.

Equations (3) and (4) contain the respective availability and resource functions fi and rji .

Albeit nonlinear in general, these can be easily implemented as look-up tables for computational

purposes. Moreover, they can be also transformed into an equivalent set of linear equations,

exploiting the fact that all arguments are binary; see the Appendix for details.

Note that the constraint (5) is non-linear, due to the operator (·)+. However, since it is piecewise

linear, we define the following related problem:
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Model MIP1
′: Same as MIP1, but with (5) replaced by the following two linear

constraints:

Ii(t + 1) ≥ Ii(t)−Ki · Vi(t) + di(t), for i = 1, · · · ,M ; t = 1, · · · , T − 1. (7)

Ii(t) ≥ 0, for i = 1, · · · ,M ; t = 1, · · · , T. (8)

Proposition 1: MIP1
′ is equivalent to MIP1.

Proof: See the Appendix.

It is worth noting here that in the objective function, minimizing the cost of a tool’s WIP

level implies maximizing its wafer throughput, due to the following relationship:

Ii(t + 1) = Ii(t)−Xi(t) + di(t), (9)

where Xi(t) is the wafer throughput of tool i in the time period t, and is given by

Xi(t) = min{Ki · Vi(t), Ii(t) + di(t)}. (10)

It can be easily seen that (5) is just a compact expression of (9) and (10).

There is a slight difference, though, between maximizing tool availability and maximizing

wafer throughput. The former is relevant only to the tool technical state, i.e., keeping the tool

operational as long as possible, whereas the latter is not only relevant to the tool technical state,

but also strongly affected by projected incoming WIP. However, for bottleneck tools, maximizing

availability is equal to maximizing wafer throughput, and vice versa, because there is always

enough in-buffer WIP to be processed.

On the other hand, in situations where one specifically wants to maximize wafer throughput,

the MIP formulation would become a little different, as defined by the following problem:
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Model MIP2: max
T
∑

t=1

M
∑

i=1

(

b′i ·Xi(t)−
ρi
∑

l=1

cli · a
l
i(t)

)

(11)

subject to:

Xi(t) ≤ Ki · fi (ai(t), ai(t− 1), . . . , ai(t− (ki − 1))) ,

for i = 1, · · · ,M ; t = 1, · · · , T ; ai(t) = 0, for t ≤ 0. (12)

Ii(t + 1) = Ii(t)−Xi(t) + di(t), for i = 1, · · · ,M ; t = 1, · · · , T − 1. (13)

Ii(t) ≥ 0, for i = 1, · · · ,M ; t = 1, · · · , T. (14)

and constraints (2), (4) and (6), where b′i in the objective function is the profit coefficient

for wafer throughput of tool i.

In general, MIP1 and MIP2 are not equivalent.

C. Implementation Issues

In the following, we focus on models MIP1 and MIP1
′, the latter of which is more amenable

for practical implementation purposes. A model implemented in practice will usually have a

simpler structure than the general formulation above. For example, it is not uncommon to consider

a group of homogeneous (identical) cluster tools. In that case, all tools have the same physical

structures and PM tasks. Hence, their availability functions are the same, as well as the resource

functions. Thus fi(·) and rji (·) will reduce to f(·) and rj(·), respectively. In addition, if manpower,

i.e., the number of available maintenance technicians, is the only resource constraint of interest,

then the resource vector R becomes a scalar.

In order to deal with the non-linearity of functions fi(·) and rji (·), we introduce a new set

of decision variables – PM task vectors. A PM task vector contains a set of PM tasks, which

could be consolidated and performed on a tool. At each time there is only one PM task vector

active on each tool. Each task vector corresponds to one scenario of PM consolidation; see the

Appendix for more details about the definition of PM task vector and the model transformation.

The set of task vectors can be generated dynamically according to which PM tasks have to be

scheduled in a given scheduling scenario. For a predefined planning horizon, only those PM

tasks whose time-windows fall into the horizon will be taken into consideration.

Based on the MIP model described above, an optimal preventive maintenance scheduling
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system has been implemented within a real fab setting with capability of optimizing PM tasks

for any work center consisting of a group of tools. With different data interfaces, the system is

integrated with other information systems in the fab in such a way that a specific instance of

the MIP model can be generated automatically by extracting PM data from a tool maintenance

database, and WIP information from a real-time dispatch system, or a fab simulation model.

After an optimal schedule is found, a summary report is presented to users with information

of projected availability and WIP of each tool in each period along the scheduling horizon. A

comparison list with initial PM schedules and model-optimized schedules is also generated, and

users can decide whether or not the model-optimized schedule will be put into effect. Further

development of software tools used in the implementation of our models, and feasibility studies

at several different fabs, are currently under way.

V. SIMULATION CASE STUDY

In order to evaluate the performance of the MIP scheduling model, we have conducted a

preliminary simulation case study. The fab simulation model we adopted in the study is an

existing (company) validated simulation model that is used in a real fab for production planning

and scheduling purposes, and is based on Brooks Automation’s AutoSched AP software [18]

(ASAP for short).

We present only summary information for this preliminary case study, with sensitive fab-

specific data removed. The work center has 11 cluster tools, i.e., M = 11. These tools are

homogeneous in the sense that they can perform the same processing steps and have the same

configuration, i.e., same processing chambers and robots. Coincidentally, there are 11 PM tasks

of interest in the study on each tool, and they are indexed from 1 to 11. The “configuration

matrix” of these tools is the one given in Table I. The longest duration of any PM task is 2 days,

and the only resource we considered was the manpower (headcount) of available maintenance

technicians. The resource function of PM task vectors, i.e., resource requirement for any joint or

single PM tasks, is listed as a table with each row corresponding to a PM scenario, its duration

and its resource requirement.

The time unit is one day, and the scheduling horizon is one week, i.e., T = 7 and t =

1, 2, 3, 4, 5, 6, 7. Those PM tasks that are to be scheduled in the horizon per tool are shown in

Fig. 2 together with their time windows defined as a pair of (earliest start date, late date). So,
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for example, PM task 1 on tool 1 should be performed between Monday and Wednesday. PM

task 5 on tool 1 is performed between Wednesday and Friday, while task 10 is between Friday

and Sunday. For tool 8, the PM task 6 has to be performed on Monday as its time window is

shrunk to a point in this specific case.

A specific MIP model instance was then generated from these PM tasks, and their individual

time windows, along with all other relevant data, such as availability and resource requirement

data sets, were fed into the scheduling system. The model instance was then solved. (For this

simulation case study, the transformed MIP model has a total of 686 decision variables and 698

constraints. It takes about 2 minutes to find a solution using IBM OSL solver on an IBM RS6000

39H workstation.) The corresponding model outputs, i.e., optimal PM schedules for these tools

along the scheduling horizon, are also shown in Fig. 2 as the asterisk points. One main feature

that can be seen in the figure is that the optimal PM schedule tends to consolidate PM tasks, as

on tools 1, 6, 9, and 11.

We simulated one week of fab operations with the two different PM schedules: the schedule

that was actually performed in operations, which is referred to as the “reference” schedule, and

the optimized, model-based schedule. Ten replications of such a simulation were made, averaging

output results. Each PM task was modeled as a “PM order” in ASAP in both simulations. Two

statistics, the average number of wafers completed on each tool and average number of WIP

wafers on each tool, were computed. Fig. 3 shows the percentage throughput increase on each

individual tool as well as the total number over all tools for the model-based schedule versus the

reference schedule, i.e., increase% = TPmodel−TPref

TPref

× 100%, where TPmodel and TPref are the

throughput under the model-based schedule and reference schedule, respectively. Fig. 4 shows

the same for WIP levels.

The simulation results show that the model-based schedule outperforms the reference schedule

in both performance metrics. Table II shows the mean values and 95% confidence intervals of

throughput and WIP changes for each of the individual tools. The aggregated improvement of

throughput over the entire group is only For throughput change, although the differences for 10

out of 11 tools are not statistically significant, the largest improvement for tool 1 of 13.9% is

in fact statistically significant; for WIP change, the decrease of WIP level for tool 11 of -2.1%

is also statistically significant.slightly more than 1.6%, but for bottleneck tools even a small

percentage improvement can have a substantial economic impact. For example, assuming a fab’s
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Fig. 2. PM tasks with associated time windows, where asterisk points are the optimal times computed by the model to perform

PM tasks.

throughput is 5,000 wafers per week and the average price for a finished wafer is $15,000, then

even a 1% improvement in throughput would result in a revenue increase of up to $750,000 per

week, or about $39 million a year.

We foresee some enormous benefits will be resulted from an implementation of such model-

based PM scheduling system. For example, the complicated scheduling process can be automated,

and this will eventually increase the productivity of fab operations by saving human resources

both in scheduling PMs and performing them. Closely related to this, the automated model-based



19

-10


-5


0


5


10


15


1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 Over

All


Tools


Tool ID


In
cr

ea
se

 o
f t

hr
ou

gh
pu

t (
%

)


Fig. 3. Simulation result for throughput changes (in percentages) under the model-based schedule over those under the reference

schedule.

TABLE II

MEAN VALUES AND 95% CONFIDENCE INTERVALS OF THROUGHPUT AND WIP CHANGES FOR INDIVIDUAL TOOLS.

Throughput Change (%) WIP Change (%)

Tool ID Mean Value 95% Confidence Interval Mean Value 95% Confidence Interval

1 13.9% [2.2%, 25.6%] -1.8% [-7.8%, 4.2%]

2 -5.9% [-17.7%, 6.0%] 2.8% [-1.4%, 7.1%]

3 0.3% [-10.5%, 11.1%] 0.5% [-1.1%, 2.0%]

4 0.8% [-8.9%, 10.4%] 0.2% [-2.9%, 3.2%]

5 2.2% [-6.5%, 11.0%] -0.7% [-2.6%, 1.1%]

6 3.6% [-2.9%, 10.1%] 0.9% [-0.6%, 2.3%]

7 0.3% [-10.9%, 11.6%] 0.4% [-1.7%, 2.4%]

8 0.6% [-10.2%, 11.4%] -0.4% [-2.3%, 1.5%]

9 -3.9% [-16.3%, 8.4%] -3.4% [-11.6%, 4.8%]

10 5.3% [-10.4%, 21.0%] 0.1% [-2.5%, 2.7%]

11 2.8% [-4.6%, 10.2%] -2.1% [-4.1%, -0.2%]
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Fig. 4. Simulation result for WIP changes (in percentages) under the model-based schedule over those under the reference

schedule.

PM scheduling should eliminate incidences of poor PM schedules due to occasional oversights

in human judgment.

On the other hand, we surmise that the close performance between the model-based perfor-

mance and the reference schedule can probably be attributed to the following factors. First,

fab engineers should be given credits for doing a good job in PM scheduling on the basis

of their rich experience in considering critical factors such as PM consolidation, and so they

come up with a near-optimal reference schedule, especially for the most critical tools. Second,

the benefits of model-based schedule might not have been revealed fully through the ASAP

simulation, because of the simplified modeling structure of cluster tools as well as the fab model

in ASAP. For instance, the relation between entire tool availability and chamber statuses can not

be modeled in ASAP as precisely as in a “configuration matrix”.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the problem of PM planning and scheduling in semiconductor

manufacturing. Due to the high level of problem complexity, we suggest a decomposition

approach, i.e., a two-level hierarchical modeling framework. At the higher level is a model

for long-term PM planning, which captures both the stochastic failure process of machines and
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demand pattern of the system. At the lower level is a model for short-term PM scheduling, which

conforms to PM policies from the planning model and obtains optimal PM schedule.

The paper focused on the lower level scheduling model, in the context of scheduling PM

tasks over a group of cluster tools. We develop a mixed integer programming model, taking

into account interdependence among PM tasks, resource constraints, and projected WIP data. By

introducing new decision variables, non-linear functions appearing in the general MIP model can

be transformed into linear functions, resulting in a model easily solvable using any commercial

LP/IP software package.

Our study shows that the approach is feasible and promising. An implementation of such a

model-based PM scheduling system could bring to a manufacturer several benefits. By providing

an optimized schedule, the system has the potential to increase equipment availability and thus to

generate more profits from fab operations, while eliminating human errors. However, effective

implementation requires a certain information systems infrastructure be in place, e.g., a tool

management system providing equipment status along with the raw schedule of PM tasks, and

a wafer dispatching system that can estimate projected WIP levels.

Regarding the model scalability, a model involving a group of a dozen tools and a set of a

dozen PM tasks on each tool seems fairly representative, and is easily in the solvable space of

commercial solvers. However, the scaling issue might become an issue if a finer granularity of

planning time unit is needed. For example, if the time unit is one hour, the model instance will

easily exceed ten thousand decision variables. We suggest a unit of a day or an eight-hour shift,

which is comparable with the frequency of most PM decisions.

Further development of software tools used in the implementation of our models, and feasibility

studies at several different fabs, are currently under way. Regarding future work in the lower

level scheduling model, there are several directions in which the model can be extended. One

direction is to incorporate statistical process control (SPC) data into the model. The idea is that

the PM schedule would be able to respond to possible “out of control” events, by triggering a

“pull” or “push” of the planned time window of the corresponding PM. Another direction is to

consider PM policies without time windows, with a penalty imposed if its starting time differs

from a planned time. It would be easy to extend our developed MIP model to this case simply

by removing time window constraints and adding a penalty function into the model objective.

There is also some questions about the possible increase of variance introduced by consolidating
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PM tasks. Such questions remains to be answered and are subjects of the future research.
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VII. APPENDIX

A. Proof of Proposition 1.

Let D(P1) and D(P1
′) be all feasible solutions of P1 and P1

′ respectively. We first show

D(P1
′) ⊇ D(P1). Note that the constraints (7) and (8) of P1

′ can be written combinatorially

as

Ii(t + 1) ≥ (Ii(t)−Ki · Vi(t) + di(t))
+ , for i = 1, · · · ,M ; t = 1, · · · , T − 1. (15)

Indeed, it is a relaxed constraint (5) of P1. So D(P1
′) ⊇ D(P1).

It can be easily verified that any optimal solution to P1
′ will achieve

Ii(t+1) = (Ii(t)−Ki · Vi(t) + di(t))
+, which implies this is also an optimal solution to P1. To

see this, assume there is an optimal solution such that I∗i1(t1+1) > (Ii1(t1)−Ki1 · Vi1(t1) + di1(t1))
+.

Obviously, if we choose I ′i1(t1 + 1) = (Ii1(t1)−Ki1 · Vi1(t1) + di1(t1))
+ < I∗i1(t1 + 1), it will

achieve a larger objective value. Contradicted.

Thus P1 and P1
′ are equivalent.

B. Solving the MIP model

There are two technical problems that must be addressed in order to solve the MIP model.

To begin with, there may be PM tasks with a duration exceeding a single period. As seen

in availability function fi and resource function rji , this results in the difficulty that chambers

statuses (thus, the tool’s state) will depend not only on PM tasks initiated in current time period

t, but also on those unfinished PM tasks that were initiated in t− 1, t− 2, . . . , etc. One method

to work around this problem is to introduce some “artificial” PM tasks as follows.

Assume PM l lasts for 3 periods. We introduce two “artificial” PMs l′ and l′′ such that l′ must

be performed in the next period following l, and l′′ is following l′, and we now treat l as a PM
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task with a duration of only one period instead of three. This relationship can be formulated as

“precedence” constraints as follows:

al
′

i (t + 1) = ali(t), (16)

al
′′

i (t + 1) = al
′

i (t). (17)

Thus any PM task with a duration exceeding one period can be transformed into a sequence of

PMs of one-period duration. However, please be aware that the introduction of “artificial” PMs

could result in a significant increase in the number of decision variables, especially when many

PM tasks last for multiple periods. In the following analysis, we will assume without loss of

generality that no PMs have a duration exceeding one period.

The second difficulty is that the availability function fi and resource function ri are non-linear

functions of chamber status. To deal with the non-linearity, the main idea is to transform these

non-linear functions into linear form by changing decision variables. Observe that availability

and resource functions can be expressed in “look-up” table form, as the “configuration matrix”.

Explicitly, if we denote the state of tool i (i.e., all chambers statuses, up or down) by si, then

the availability function will become fi(si), and we denote its value by f si

i . Now the function

can be expressed as a data set {f si

i }.

The decision variable in the MIP model is ali(t), i.e., to determine whether PM task l is

conducted on tool i in period t, for every feasible l. This is equivalent to determining a set of

PM tasks (task vector) conducted on tool i for every period t. Because there is a finite number of

PM tasks, it is easy to obtain all combinations, i.e., vectors of these tasks. For example, if there

are n tasks on tool i, then there are 2n− 1 task vectors, which include all possible combinations

of these n tasks. We denote the task vector by v, and for the sake of simplicity, we assume

every vector v is associated with only one tool, i.e., it can be only applied to a specific tool. We

denote by V(i), the set of all feasible task vectors for tool i. The information of element tasks

included in a vector v is contained in data e(l, v), where e(l, v) = 1 if v contains l, e(l, v) = 0

otherwise.

Now, define new binary decision variables z(i, v, t) for v ∈ V(i), where z(i, v, t) = 1 if task

vector v is performed on tool i in the period t, z(i, v, t) = 0 otherwise. Obviously, for v /∈ V(i),

z(i, v, t) = 0. It is also obvious that on each tool in any period, there is only one vector that
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can be active. So, the following new constraints on z(i, v, t) will be enforced:

∑

v

z(i, v, t) ≤ 1, for i = 1, . . . ,M ; t = 1, . . . , T. (18)

The original decision variable ali(t) can be expressed as follows:

ali(t) =
∑

v∈V(i)

z(i, v, t) · e(l, v), for i = 1, . . . ,M ; l = 1, . . . , ρi; t = 1, . . . , T. (19)

Since tool state si is completely dependent on task vector v, their relationship can be charac-

terized by δ(v, si), where δ(v, si) = 1 if v changes the tool state to si, otherwise δ(v, si) = 0. The

availability function now can be expressed as a linear function of the control variable z(i, v, t)

as follows:

Vi(t) =
∑

v∈V(i)

∑

si

f si

i · δ(v, si) · z(i, v, t), for i = 1, . . . ,M, t = 1, . . . , T. (20)

Similarly the resource requirement of the tool is dependent only on task vector, the corre-

sponding resource function can be expressed as a data set {rj,vi }. Hence, equation (4) can be

written as:

Rj(t) ≥
∑

i

∑

v∈V(i)

rj,vi · z(i, v, t), for j = 1, . . . , N ; t = 1, . . . , T. (21)

Thus, we are able to transform non-linear functions into linear functions of the new decision

variables, and the transformed MIP model can be solved by a commercial IP/LP package. (In

our implementation, we employ IBM’s EasyModeler and OSL package.) Equations (18) and (19)

are the new constraints added in the transformed MIP model. The number of new constraints

due to equations (18) and (19) is M · T +
∑M

i=1 ρi · T .

The drawback of introducing the new task vectors is that it will have a set of decision variables

with much larger size. There are many ways generating the set of task vectors. The basic

requirement is that the set of v must cover all possibilities of PM consolidations. One of the

easiest ways, which is the method used in our current implementation, is to list all possible

combinations of PM tasks for each tool, and then put these combinations together and give them

different index numbers one by one. This method ensures all possibilities of PM consolidation

would be covered by the set, and its size is
∑M

i=1 2ρi −M . The actual number of new decision

variables due to z(i, v, t) is
(

∑M
i=1 2ρi −M

)

· T .
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