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Abstract: In this paper, we outline an intrinsic formulation of
the identification problem of linear system theory. The nonlinear
filtering problems which appear in this way essentially fall into
four distinct classes, distinguished by their estimation algebra.
In principle, it is possible to explicitly solve the identifica-
tion problem in the 'hyperbolic cases' using classical methods
from the theory of partial differential equations. This is
illustrated by an example which indicates the required sufficient
statistics for sclving the identification problem.

1. TINTRODUCTION

Consider the linear stochastic differential system,

#l

dxg A(p)xpdt + bju,dt + bydw,

(1.1)

#

dy¢ <g,Xp> dt + dvg

where up denotes a known input function, {w.} and {vyl are
independent Brownian motion processes, {x.} and {yp} are respectively
the state and measured output processes. For reasons of Identi-
fiability we let,
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the rational canonical form associated with p%(pl,...,pﬂ}'ew? and
we let, q&(ql,...,qn)'amP. The vectors b; and bp are known and
fixed. When p and g are known, the state-estimation problem for
{(1.1) has the well~known solution -~ the Kalman-Bucy filter. By
the identification problem we shall mean the problem of jointly
estimating the state and the parameters ~- in other words it is
the ponlinear filtering problem for the extended system with state
2 ={Xy , Praqe) defined by,

dxy = A(pe)xe dt + byupdt + bpdwy ,
dpe = 1O (1.3)
dgy = 0,

(1.4)

dye = <qt,xt>dt + dvg,

More precisely, in solving the identification problem one seeks a
solution to the Kushner-Stratonovitch eqn, [1] satisfied by the
conditional density p(t,z) given the observations yg, 0O<s<t.
Although this point of view goes back to Kushmer [2], progress along
these lines has been impeded by the nonlinearity of the Kushner

equation.

More recently, it has been recognized [3,4,5] that an under-
standing of the evolution equation satisfied by the so-called
unnormalized conditional density, y{t,z) is essential for further
progress in nonlinear filtering theory. Knowing ¢(t,z), the
conditional density is determined by the normalization

p(t,x) = ¥{t,z)}//y(t,z) dz. (1.5)

In the general situation when {zy} is a diffusion precess
with observation (semimartingale) {y.} of the form

dyp = h(zg) dt + dvy (1.6)

it is known that, ¢{t,z) satisfies a linear stochastic partial
differential equation (Mortenson-Duncan~Zakai equation) of the

Ito type,
dy(t,z) = &pt,z) dt + h(z) ¢(t,z)dys (1.7)

where £ is the Kolmogerov forward operator associated with the
diffusion {zt}. (See the expository paper by Davis and Marcus

in these proceedings). Now, as regards questions related to the
complexity of a nonlinear filtering problem geometric ideas play
a crucial role and one looks at the Stratonovitch version of (1.7)
written formally as,
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s/t (t,z)={5h? (2) Jp(t,z)+h(z)dy/dt. . o (1.8)

In particular, the eoperator Lie algebra G generated by i?%hz and
h, known as the estimation algebra.[3], has been :emphasized by
Brockett,Mitter, Ocone -and others as an object of central interest.
Tn what follows we use the estimation algebra to classify identi-
fication problems and investigate special cases.

2. ESTIMATION ALGEBRAS:

The fact that the estimation algebra ig inpvariant under
change of coordinates [6], makes it useful as a classifying tool.
In particular the choice of canonical forms is not crucial.
Essentially there are four cases: o
Case (1} bp=0; by=0. Then d=-<Ax, 3/ 3x>-tT(4). Define Ag=
dleq,x>%; A1®<q,x>. Then the estimation .algebra G={Ap,A1lL A, 18
defined by the structure equations,[Ao,Aj}=Aj+l; [Aj,Ak]=U.k,j3l_
where, Aj=(~l)3:1<q,Aj*lx> j=l,2... . We have a sequence of
abelian ideals Gn=span{Aj;jmn,n+1,..}nz;, with finite codimension
(a feature of potential value in connection with approximation
problems).

Case (2) by=e, say;by=0. The presence of deterministic inputs
Joes mot alter the structure of the estimatiocn algebra. Note
d=-<hx,d/dx>-tr(A)-ur<hy,d/3x>. Define Ag=si-issq,x>Tand As=(-1)3-1
<q ,AJ'1x>+(—l)3“ <q,AJ“2b1>ut, j>2. Then once again [AO,A3}=Aj+1;
[Ag,4, =05 for j,k>1. '

Case (3) by=ep; py=0 and the parameters p are knowm. Agshis..-

otc are as in the preyipus case. But by the Cayley-Hamilton
theorem An(p)=£glpi A%;?. Hence the cperators Ay for k>ntl are

linearly dependent gn the operators As for jsN+1. Then the
estimgtion algebra_G:{AO,Al}LmA_ ig fipite dimensiocnal. 1In fact
using tensor.products it can be shown that the underlying filtering
problem is linear. .. . . '

Case (&).bz#o. The presence of driving noise drastically alters
the structure of the Lie algebra. The gemeral situation is not
unlike the example below:

dxy axtdt + dwg
éat = 0
dyy = xpdt + dwvp

H

ﬁm—axafax-a+%82/3X2;AOw L%XZ;A1=X.

Define Agnyy = (62 +1)™x; Appyp = (a2 + DR(3/dx-ax) with
0=0,1.2,.0. . Also let By = -(aZ+D¥, k=0,1,2,... . Then the
structure equations are,

[Ao’AzﬂX1]“A2n+2é [AgsA2nt2]=Aont3 [A2n+1,Apnt1 1503
EA2n+2: 2m+2]=0; [A2n+1= A20+2 1=Bmin - [BjaAk]mo; [Bj,ﬁk}”ﬂ.
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It is possible to write down filtrations of G by sequences_of
ideals as before. In fact in each case above the algebra G is a
profinite dimensional filtered Lie algebra (see Hazewinkel-

Marcus [10}), All the known nonlinear filtering problems that

admit finite dimensionally computable statistics have Lie algebras

of this type.

It is however important to note that the identification
problem in our formulation is tractable in the cases (1), (2}, (3)
above where there is no driving noise, In these cases, the
Stratonovitch form of the evolution equation for the unnormalized

conditional density is given by,

/ot = {Ag + AryIY (?-1)
where, Ay = w<Ax,3/3x>«tr(A)—ut<bl,3/Bx>—%<q,x>2, and Ay=<q,x>.
In principle, equation (2.1) can be solved by the methed of
characteristies. See below.

3. AN EXAMPLE
Consider the special case of (1.3)-(1.4) given by

dxy = =axgdt + ugde
dye = xpdt + dvg (3.1)

i

Then (2.1) reduces to,
3/at= (ox-u,)ap/dx+ (a-x2/0 + x7)y. (3.2)

Let the initial condition be given by w(t,x,a)!tzo = ygx,a). In
the 4-dimensional (t,x,¢,z) space, we want to pass an integral
hyper-surface S: z=y(t,x,a) of the equation (3.2) through the 2-
dimensional manifeld I' (Cauchy data) given parametrically by

x=s1, a=s2, t=0, z=Pg{s1,sy). The characteristics passing through
points (s1,s3) in ' sweep out 5 and are given by the system of
(characteristic)differential equations: '

dx/fdt = -(ax - ug)

da/dt = 0
dtfdr = 1
dz/dt = (o - xz/z + x¥ )z 3.3

Solving (3.3), we obtain a parametric representation of the
characteristic curves; a=s83; {=T; xﬂX(sl,sz,T)= 9“52151 +
IS e=82(T-9)y_dg and finally,

Zw%(sl,sz)-exp(szT)-exp(fg X(sl,sz,c)ygds—%fé xz(sl’sz’?362§.

Equation (3.4) for z is nothing but a parametric representa-
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tion of the solution | we are seeking. It is easy to see that
given x,t, and a the parameters sj,$) and. T can be eliminated and

O (E=0) }.t o (o=

-d,. {3.5)

X(s1,572,0) = g-dg

Substitution in (3.4) gives the explicit representation of ¢(t,x,a)
for given input and output functionms. The last exponential factor
in (3.4) corresponds to the well-known likelihood ratio formula

([71, 181y
4. SUFFICIENT STATISTICS

In Eqn. (3.4), only the term fg X(sl,sz,é)?cdg inside the
exponential depends on measured outputs and explicitly,

t .
Io X(81589,0)¥5dg

S "I PN & T Kt
=xr a* ff (-0 dy_ -I (-a) S t,o)d (4.1)
=0 0 (_T;?m Yo =0 ) {}Yk( ) ¥g

where vy (t,0) = It (Uue)k/k!uade. The two sequences
s

1l

(a) B (t) = J§ (t=0)¥/k! dyg k= 0,1,2 ..

and
®) wele) = S§ v (t,oddy; k= 0,1,2, ...

may be viewed as sufficient statistics for the problem. Each 8
can be computed as the output of a finite dimensional system
driven by y;. The same holds true for the wy's. We must mention
that the statistics wg are similar to the sufficient statistics
determining the likelihood ratio given by Giorgio Picei [9].
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