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Abstract

In this paper we describe a recursive algorithm to
compute representations of functions with respect to
nonorthogonal and poesibly overcomplete dictionaries
of elementary building blocks e.g. affine (wavelet)
frames. We propoee ‘a modification to the Matching
Pursuit algorithm of Mallat and Zhang (1992) that
maintains full backward orthogonality of the residual
(error) at every step and thereby leads to improved
convergence, We refer to this modified algorithm as
Orthogonal Matching Pursuit (OMP). It is shown that
all additional computation required for the OMP al-
gorithm may be performed recursively.

1 Introduction and Background

Given a collection of vectors D = {z;} in a Hilbert
space H, let us define

V =Span{z,}, and W=V (in %).

We shall refer to D as a dictionary, and will assume
the vectors z,,, are normalized (||za[| = 1). In [3] Mal-
lat and Zhang proposed an iterative algorithm that
they termed Matching Pursuit (MP) to construct rep-
resentations of the form

Pyf= Zanzﬂ. (1)

‘where Py is the orthogonal projection operator onto

V. Each iteration of the MP algorithm results in an
intermediate representation of the form

k
=Y aiza, +Ruf = fu + Ruf,

i=1
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where fi is the current approximation, and Ry f the
current residual (error). Using initial values of Ry f =
f, fo=0, and k = 1, the MP algorithm is comprised
of the following steps,

—{J) Compute the inner-products {(Ref,zn)}n.
(II) Find ne4, such that

I(R‘*f’ z"h-ﬂ.)l .>. C!Bl;p KRk.f» zJ)l »

where 0 < a < 1.
(IIT) Set,

feri = fe + (kas zﬂuq) Tnasi
Rk+1f = ka - (kax zn*+1> zn..H

(IV) Increment k, (k « k +1), and repeat steps (I}-
(IV) until some convergence criterion has been
satisfied.

The proof of convergence [3] of MP relies essentially on
the fact that (Ri41f,2zn,,,) = 0. This orthogonality
of the residual to the last vector selected leads.to the
following “energy conservation” equation.

IR = Rt S + [(Rif zmn ) @)

It has been noted that the MP algorithm may be de-
rived as a special case of a technique known as Pro-
jection Pursuit (c.f. [2]) in the statistics literature.

A shortcoming of the Matching Pursuit algorithm
in its originally proposed form is that although asymp-
totic convergence is guaranteed, the resulting approxi-
mation after any finite number of iterations will in gen-
eral be suboptimal in the following sense. Let N < <0,
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It also follows that the residual Riy1f satisfies,
Rif = Riy1f + akvx, and

{Rx f, =k+1)|2'

eI @

IR« 11 = Rusa fII* +
2.1 The OMP Algorithm
The results of the previous section may be used to

construct the following algorithm that we will refer to
as Orthogonal Matching Pursuit (OMP).

Initialization:
fo=0, R‘0f=fv D0={}

zo=0, aJ=0, k=0

(I) Compute {(Ruf,2n);zn € D\ Di}-
(II) Find za,,, € D\ D such that

[(Raf,znuai)| 2 asup {Ruf zj), 0<a< 1.

(un 1 [(R:.f,z,,,,_“)l < é, (6 > 0) then stop.

(IV) Reorder the dictionary D, by applying the per-
mutation k4+ 1 ¢ ng4y.

(V) Compute {b5}%_,, such that,
Tk4+l = =1 b'klz" + e
and (7%,22) =0, n=1,..,k

(VI) Set, aft} = ar = 17l (Raf, 2i41),
af*tl = ok —apdl, n=1,...,k

and ui)date ihe model,

' k+1
k
fk+1 = Z G.,Hzn
n=1
Rusrf f = fresr

Dy = DhU{zk+1}-

[VII) Set k « k + 1, and repeat (I)=(VII).

2.2 Some Properties of OMP

As in the case of MP, convergence of OMP relies
on an energy conservation equation that now takes
the form (7). The following theorem summarizes the
convergence properties of OMP.

Theorem 2.1 For f € H, let Rif be the residuals
generated by OMP. Then

(i) Jim [Raf = Pysfll = 0.

(i) fn =Py fi N=012,...

Proof: The proof of convergence parallels the proof
of Theorem 1 in [3]. The proof of the the second prop-
erty follows immediately from the orthogonality con-
ditions of Equation (3).

Remarks:

The key difference between MP and OMP lies in Prop-
erty (iif) of Theorem 2.1. Property (iif) implies that
at the Nt® step we have the best approximation we
can get using the N vectors we have selected from
the dictionary. Therefore in the case of finite dictio-
naries of size M, OMP converges in no more than M
iterations to the projection of f onto the span of the
dictionary elements. As mentioned earlier, Matching
Pursuit does not possess this property.

2.3 Some Computational Details

"As in the case of MP, the inner products
{(Rif,z;)} may be computed recursively. For OMP
we may express these recursions implicitly in the for-
mula

k
(Raf,z;) = {f = fi,25) = (frz;) — ) an (zn, 7).

n=1

(8)

The only additional computation required for OMP,

arises in determining the b%’s of the auxiliary model

(5). To compute the b%’s we rewrite the normal equa-

tions associated with (5) as a system of k linear equa-
tions,

vi = Aibg; 9)

where

. T
Vi = [<3k+1»31):(zkﬂ,z;)...,(z‘,ﬂ,zk)]

by = [585,....08)7
and
(z1,21) (z2,21) (zx, 21)
(z1,z2) (z2,22) (zk, z2)
Ay = . . :
(z1,2z) (22, Zk) (Zk, Zk)



Note that the positive constant 4 used in Step (III)
of OMP guarantees nonsingularity of the matrix Ay,
hence we may write

by = AJvs. (10)

However, since Ag,; may be written as
- A), Vi
(where » denotes conjugate transpose) it may be

shown using the block matrix inversion formula that

A; !+ fbeb; | —Fbs ]
v e R

where 4 = 1/(1 — vibi). Hence A;}_l, and therefore
bi4+1, may be computed recursively using A;l, and
by from the previous step.

A;ix = [

| 3 Examples

In the following examples we consider represen-
tations with repect to an affine wavelet frame con-
structed from dilates and translates of the second
derivate of a Gaussian, i.e. D = {¢m,, mn€ L}
where,

Ymn(z) = 2™7¢(27z — n),

and the analyzing wavelet ¢ is given by,

¥(z) = (fﬁyn (22 = 1) =512,

Note that for wavelet dictionaries, the initial set of in-
ner products {{f, ¥mn)}, are readily computed by one
convolution followed by sampling at each dilation level
m. The dictionary used in these examples consists of
a total of 351 vectors.

In our first example, both OMP and MP were ap-
plied to the signal shown in Figure 2(a). We see from
Figure 2(b) that OMP clearly converges in far fewer
iterations than MP. The squared magnitude of the co-
efficients ax, of the resulting representation is shown in
Figure 3. We could also compare the two algorithms
on the basis of required computational effort to com-
pute representations of signals to within a prespecified
error. However such a comparison can only be made
for a given signal and dictionary, as the number of it-
erations required for each algorithm depends on both
the signal and the dictionary. For example, for the
signal of Example I, we see from Figure 4 that it is 3
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Figure 2: Example]: (a) Original signal f, with OMP
approximation superimposed, (b) Squared L? norm of
residual R f versus iteration number &, for both OMP
(solid line) and MP (dashed line).
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Figure 3: Distribution of coefficients obtained by ap-
plying OMP in Example I. Shading is proportional to
squared magnitude of the coefficients ai, with dark
colors indicating large magnitudes.

to 8 times more expensive to achieve a prespecified er-
ror using OMP even though OMP converges in fewer
iterations. On the other hand for the signal shown
in Figure 5, which lies in the span of three dictionary
vectors, it is approximately 20 times more expensive
to apply MP. In this case OMP converges in exactly
three iterations.

4 Summary and Conclusions

In this paper we have described a recursive al-
gorithm, which we refer to as Orthogonal Matching
Pursuit (OMP), to compute representations of signals
with respect to arbitrary dictionaries of elementary
functions. The algorithm we have described is a mod-
ification of the Matching Pursuit (MP) algorithm of
Mallat and Zhang [3] that improves convergence us-
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Figure 4: Computatiohal cost (FLOPS) versus ap-
proximation error for both OMP (solid line) and MP
(dashed line) applied to the signal in Example I.
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Figure 5: Example II: (a) Original signal f, (b)
Squared L? norm of residual Ryf versus iteration
number k, for both OMP (solid line) and MP (dashed
line).

mg an additional orthogonalization step. The main

benefit of OMP over MP is the fact that it is guar-
anteed to converge in a finite number of steps for a
finite dictionary. We also demonstrated that all addi-
tional computation that is required for OMP may be
performed recursively. '

The two algorithms, MP and OMP, were compared
on two simple examples of decomposition with respect
to a wavelet dictionary. It was noted that although
OMP converges in fewer iterations than MP, the com-
putational effort required for each algorithm depends
on both the class of signals and choice of dictionary.
Although we do not provide a rigorous argument here,
it seems reasonable to conjecture that OMP will be
computationally cheaper than MP for very redundant
dictionaries, as knowledge of the redundancy is ex-
ploited in OMP to reduce the error as much as possible

at each step.
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