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Abstract

In this paper we describe a recursive algorithm to
compute representations of functions with respect to
nonorthogonal and possibly overcomplete dictionaries
of elementary building blocks e.g. aiEne (wa.velet)
frames. We propoeea modification to the Matching
Pursuit algorithm of Mallat and Zhang (1992) that
maintains full backward orthogonality of the residual
(error) at every step and thereby leads to improved
convergence. We refer to this modified algorithm as
Orthogonal Matching Pursuit (OMP). It is shown that
all additional computation required for the OMP al
gorithm may be performed recursively.

1 Introduction and Background

Given a collection of vectors D = {z} in a Hubert
space 1i, let us define

V = Span{z}, and W = V1 (in E).

We shall refer to D as a dictionary, and will aasume
the vectors z,,, are normalized (jlxII = 1). In [3] Mal
lat and Zhang proposed an iterative algorithm that
they termed Matching Pursuit (MP) to construct rep
resentations of the form

Pyf=Eanzn, (1)

where P1, is the orthogonal projection operator onto
V. Each iteration of the MP algorithm results in an
intermediate representation of the form

f=Ea:n+R*ffk+Pf,
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where fk is the current approximation, and Rkf the
current residual (error). Using initial values of R0f =
1, fo = 0, and k = 1, the MP algorithm is comprised
of the following steps,

.,.41) Compute the inner-products {(Rkf,z)}.

(H) Find flki such that

I(R*f,1:n1+,)l asupl(Rkf,z,)I,

where 0 < a < 1.

fk+1 = 1k + (Rkf, z+1)Zflk+j

= Rkf— (Rkf,zflk+l)zflk+,

(IV) Increment k, (k +— k + 1), and repeat steps (I)—
(IV) until some convergence criterion has been
satisfied.

The proof of convergence [3] of MP relies essentially on
the fact that (Rk+lf,zflk+l) = 0. This orthogonality
of the residual to the last vector selected leads..±o the
following “energy conservation” equation.

lIfII2 jj’,’+1fjI2+ l(kf,Zn4+1)I2. (2)

It has been noted that the MP algorithm may be d&
rived as a special case of a technique known as Pro
jection Pursuit (c.f. [2]) in the statisti literature.

A shortcoming of the Matching Pursuit algorithm
in its originally proposed form is that although asymp
t.otic convergence is guaranteed, the resulting approxi
mation after any finite number of iterations will in gen
eral be suboptimal in the following sense. Let N < co

(III) Set,
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givestheoptimalapproximationwithrespecttothe
selectedsubsetofthedictionary.Thisisachievedby
ensuringfullbackwardorthogonalityoftheerrori.e.
ateachiterationRkfEV.FortheexampleinFig
ure1,OMPensuresconvergenceinexactlytwoitera
tions.Itisalsoshownthattheadditionalcomputation
requiredforOMP,takesasimplerecursiveform.

WedemonstratetheutilityofOMPbyexample
ofapplicationstorepresentingfunctionswithrespect
totime-frequencylocalizedaffinewaveletdictionaries.
WealsocomparetheperformanceofOMPwiththat
ofMPontwonumericalexamples.

2OrthogonalMatchingPursuit

Assumewehavethefollowingkthordermodelfor

f€Ii,

f=azn+Rkf,with(Rkf,s)=0,n1,...k.

(3)
Thesuperscriptk,inthecoefficientsa,showthede
pendenceofthesecoefficientsonthemodel-order.We
wouldliketoupdatethismodeltoamodel
oforderk+1,

k+1

f=+Rk+lf,with(Rk+lf,z,)=0,
,i=1n=1,...k+1.

(4)
SinceelementsofthedictionaryDarenotrequired
tobeorthogonal,toperformsuchanupdate,wealso
requireanauxiliarymodelforthedependenceofzk+1

onthepreviousx’s(n=1,...k).Let,

with<7k,Zn)O,n=1,...k.

(5)

Thus=Pvbzk+a,and=Pvk+1,
isthecomponentofxk1whichisunexplainedby
{z11...,z}.

Usingtheauxiliarymodel(5),itmaybeshownthat
thecorrectupdatefromthektordermodeltothe
modeloforderk+1,isgivenby

5+1k_b—1k(5 an—a3,...,

andat=

(R5f,Zk+i)(Rkf,Zk+j)

wherea==2 (7s,zsi)117511

bethenumberofMPiterationsperformed.Thuswe
have

fN=(f,zflk+I)z,.

DefineVN=Span{z,,.Weshallrefer
tofNasanoptima!N-termapprnximationiffri

‘VNf’i.e.friisthebestapproximationwecan
constructusingtheselectedsubset{z1,...,zflN}of
thedictionaryD.(Notethatthisnotionofoptimal
itydoesnotinvolvetheproblemofselectingan“op
timal”N-elementsubsetofthedictionary.)Inthis
sense,friisanoptimalN-termapproximation,ifand
onlyifRN!EV.AsMPonlyguaranteesthat

RNfLx,,,friasgeneratedbyMPwillingeneral
besuboptimal.Thedifficultywithsuchsuboptimality
iseasilyillustratedbyasimpleexampleinJR2.Let
z1,andx2betwovectorsinJR2andtakef€i2as
showninFigure1(a).Figure1(b)isaplotofIIRsfll 2

(a)
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Figure1:Matchingpursuitexamplein1R2:(a)Dic
tionaryD={z1,z2}andavectorf€1R 2

versusk.Hencealthoughasymptoticconvergenceis
guaranteed,afteranyfinitenumberofsteps,theerror
maystillbequitelarge.‘

InthispaperweproposearefinementoftheMatch

ingPursuit(MP)algorithmthatwerefertoasOr

thogonalMatchingPursuit(OMP).Fornonorthogo
naldictionaries,OMPwillingeneralconvergefaster
thanMP.ForanyfinitesizedictionaryofNelements,

OMPconvergestotheprojectionontothespanofthe
dictionaryelementsinnomorethanNsteps.Fur-

•thermoreafteranyfinitenumberofiterations,OMP

‘AaimlaidifficultywiththeProjectionPursuitalgorithm
notedbyDonohoeLaL[11whosuggestedthatbec.kfitting

maybeusedtoimprovetheconvergenceo(PPRAlthoughthe

tediniqueisnotfullyde.ibedin(iJitappearsthatitisinthe

samespirita.thetedniquewepresenthere.

R5f,Xt+i)

Ilzt+i112—E1b(z,,,Z54.j)
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It also follows that the residual Rk+jf satisfies,

Rkf = Rk+lf + akj’k, and

IIRkfH2 = IIR+ifil2+

117k II

2.1 The OMP Algorithm

The results of the previous section may be used to

construct the following algorithm that we will refer to

as Orthogonal Matching Pursuit (OMP).

As in the case of MP, convergence of OMP relies

on an ener’ conservation equation that now takes

the form (7). The following theorem summarizes the

convergence properties of OMP.

Theorem 2.1 For f € ?t, let Rkf be the residuals

gerzeruted by OMP. Then

(1) urn IIRkf—.PvfIIO.
(7) k-.oo

(ii)fN=PV,,,f, N=O,1,2

Proof: The proof of convergence parallels the proof

of Theorem 1 in [3]. The proof of the the second prop

erty follows immediately from the orthogonality con

ditions of Equation (3).

Remarks:

The key difference between MP and OMP lies in Prop

erty (ii/) of Theorem 2.1. Property (iif) implies that

at the N step we have the best approximation we

can get using the N vectors we have selected from

the dictionary. Therefore in the case of finite dictio

naries of size M, OMP converges in no more than M

iterations to the projection of f onto the span of the

dictionary elements. As mentioned earlier, Matching

Pursuit does not possess this property.

2.3 Some Computational Details

As in the case of MP, the inner products

{(Rkf, x,)) may be computed recursively. For OMP

we may express these recursions implicitly in the for

mula

(f,z) = (f-fk,zf) = (f,x)—a (x,z).

(8)

The only additional computation required for OMP,

arises in determining the b ‘a of the auxiliary model

(5). To compute the b’s we rewrite the normal equa

tions associated with (5) as a system of k linear equa

tions,

where

Vk = Akbk (9)

T
= [(Zk+1,Z1),(Xk+j,Z2). .

=

1itiali.ation

foO, R0ff, D0={)

Zo=O, a=O, k=O

(I) Compute {(Rkf, x,) ; z D \ Dk).

(II) Find Xllb+ E D \ Dk such that

1(R*f,znh+jIasupl(Rkf,xi)I, O<’a 1.
J

(III) If (Rkf,xnh+,)I <, ( > 0) then stop.

(IV) Reorder the dictionary D, by applying the per

mutation k + 1 4-k k+1•

(V) Compute {b}1,such that,

= E1bz +7k

and (7k,z)=0, n=1,...,k.

(VI) Set, cz =ak = 117k112(Rkf,Zk+l),

a1=a—akb, n=1,...,k,

and update the model,

k+1

fk+1 = a1z,*

R*+af =

= DkU{zk+1).

VII) Set k — k + 1, and repeat (I)—(V1I).

2.2 Some Properties of OMP and

(z1,x1) (z2,z1) . . . (x,z)

(:i,x2) (x21x2) . . . (z,z)

(X1,Xk) (z2,Zk) ..:
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3 Examples

In the following examples we consider represen
tations with repect to an a.ffine wavelet frame con
structed from dilates and translates of the second
derivate of a Gaussian, i.e. D = {m,,,, m, n E Z}
where,

= 2m/2,(2m1
—

and the analyzing wavetet 0 is given by,

/ 4 \1/2

= (i.;;:;) (:2
— 1) e_’’2

Note that for wavelet dictionaries, the initial set of in
ner products {(f, Om,n)}, are readily computed by one
convolution followed by sampling at each dilation level
m. The dictionary used in these examples consists of
a total of 351 vectors.

In our first example, both OMP and MP were ap
plied to the signal shown in Figure 2(a). We see from
Figure 2(b) that OMP clearly converges in far fewer

iterations than MP. The squared magnitude of the co
efficients 0k, of the resulting representation is shown in
Figure 3. We could also compare the two algorithms
on the basis of required computational effort to com
pute representations of signals to within a prespecified
error. However such a comparison can only be made
for a given signal and dictionary, as the number of it
erations required for each algorithm depends on both
the signal and the dictionary. For example, for the
signal of Example I, we see from Figure 4 that it is 3

10•’
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Figure 3: Distribution of coefficients obtained by ap
plying OMP in Example 1. Shading is proportional to
squared magnitude of the coefficients 0k, with dark
colors indicating large magnitudes.

to 8 times more expensive to achieve a prespecified er
ror using OMP even though OMP converges in fewer
iterations. On the other hand for the signal shown
in Figure 5, which lies in the span of three dictionary
vectors, it is approximately 20 times more expensive
to apply MP. In this case OMP converges in exactly
three iterations.

4 Summary and Conclusions

In this paper we have described a recursive al
gorithm, which we refer to as Orthogonal Matching
Pursuit (OMP), to compute representations of signals
with respect to arbitrary dictionaries of elementary
functions. The algorithm we have described is a mod
ification of the Matching Pursuit (MP) algorithm of
Mallat and Zhang [3] that improves convergence us-

Oir.4 Sp w.d 0.W Amcn

(a)

Note that the positive constant used in Step (111)
of OMP guarantees nonsingulazity of the matrix Ak,
hence we may write

bk = A’vk. (10)

However, since Ak+1 may be written as

r Ak k 1
i I, (11)

I. V

(where * denotes conjugate transpose) it may be
shown using the block matrix inversion formula that

— r A1 + bkb —,3bk 1 (12)k+11 —flb

where fi = 1/(1 — vZbk). Hence A1, and therefore

bk÷j, may be computed recursively using A1, and

.bk from the previous step.

10’
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Figure 2: Example I: (a) Original signal f, with OMP
approximation superimposed, (b) Squared L2 norm of
residual Rkf versus iteration number k, for both OMP
(solid lini) and MP (dashed line).
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Figure 4: Computational cost (FLOPS) versus ap
proximation error for both OMP (solid line) and MP
(dashed line) applied to the signal in Example 1.
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at each step.
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ing an additional orthogonalization step. The main
benefit of OMP over MP is the fact that it is guar
anteed to converge in a finite number of steps for a
finite dictionary. We also demonstrated that all addi
tional computation that is required for OMP may be
performed recursively.

The two algorithms, MP and OMP, were compared
on two simple examples of decomposition with respect

to a wavelet dictionary. It was noted that although
OMP converges in fewer iterations than MP, the com
putational effort required for each algorithm depends

on both the class of signals and choice of dictionary.
Although we do not provide a rigorous argument here,
it seems reasonable to conjecture that OMP will be
computationally cheaper than MP for very redundant

dictionaries, as knowledge of the redundancy is ex
ploited in OMP to reduce the error as much as poible
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