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TVINTRODUCTION
A DUAL-SPIN spacecraft may be viewed as a simple spinning platform carrying @ motor-driven
symmetric rigid rotor (see Fig. 1}. The rotor is spun up to a desired angular velocity refative

to the platform and then it is maintained at this constant angular velocity. As we shall show
below, this requires that the motor continue to exert a nonzere torque (dependent on the
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platform angular velocity). The essential intuition here is that in the presence of a suitable
damping mechanism, and for sufficiently high rotor velocities, one can expect the‘ spacecraft
angular momentum vector 1o align itself eventually with the rotor axis and that this configur-
ation is stable. Although a first successful application of the above attitude acquisition
technique was carried out in the RCA Satcom 1 satellite (December 1975}, analytical verifi-
cation of the intuition has been elusive. However, see the work of Carl Hubert {[7, 8, 9]) for
a fundamental effort in this direction.

The difficalty lies in the correct choice of energy function {or Lyapunov function} and the
determination of the appropriate invariant manifold for the problem. In the presence of

= Partial support for this work was provided by the Department of Energy uader Contract DEACOI1-80-
RAS50420-A001 and by National Science Foundation under Grant ECS-81-18138.
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damping, we chall see that momentum spheres are replaced by poncompact momentem
varieties as invariant manifolds. ‘The choice of energy function is very much dependent on the
damping mechanism and the study of critical point structure 1$ complicated by the noncom-
pactness of momentim varieties. In his paper [8], Hubert treated 2 particular damping

mechanism and identified a Lyapunov function, but this study remains incomplete for the lack

of critical point information.

In this paper we treat the dynamics of rigid spacecraft carrying three (motor driven or free
spinning) rotors (see Fig. 2). Starting from the basic equations in Section 2 we determine in
Section 4, the Lie~Poisson structures for the cases of driven roters and free-spinning rotors.
The necessary background material on Lie—Poisson structures is included in Section 3. In
Section 4, we also derive in a simple manner the usual design conditions for dual-spin spacecraft
by investigating the conditions under which the Hamiltonian of the driven rotor case is a
perfect Morse function on the momentum sphere. (Compare with the calculations of Hubert
in [9].) Generalizations of these perfectness conditions are contained in {20].

In Section 5, we show that a naive damping mechanism for the driven rotor case with the
Hamiltonian as Lyapunov function fails. In Section 6, we treat the case of damped free-
spinning rotors and investigate asymptotic behavior. The appendix contains a summary of the

results of {20].

Note. Throughout this paper we will assume that each rotor is spinning about an axis of
svimetry passing through the center of mass. In the absence of such symmetry the motions

can be quite compiex {See 1211

2 BASIC EQUATIONS FOR RIGID SPACECRAFT WITH ROTORS

A standard refere.nce for this'section is the paper of Meyer {13]. Consider the rigid spacecraft
as a rigid body as in Fig. 2, with rotors attached along the body axes specified by the unit
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VECLOTS {11, Uye, g attached to the body. We are given an orthonormal frame u, = (e, Uz, Uy
fixed in inertial space. The attitude of the body relative to the inertial frame u, is specified
by the element A, of SO(3) that carries the inertial frame to the body frame u, =

(ualz Ugs, uaS):
Aty = 1, (2.1)

Rotation of the body causes the element 4, of $G(3) 10 evolve with time and this evolution

obeys the basic kinematic equation

Age = S(e1,) Az, (2.2)
X )
where. for any x = x; | € R°, S(x) denotes the skew-symmetric matrix
X
¢ X3 X
Sx)=x; 0 X {2.3)
X =X 0

The vector w, represents the angular velocity of the body relative to the inertial frame. Let
Jo = diag(jl, j%, j5). be the diagonal matrix whose ¢lement ji denotes the moment of inertia of
the ith rotor about its spin axis. Let J¢ denote the moment of inertia of the body with the
rotors locked with respect to the body axes. Then the tota] body angular momentum is given

by,
hy = Jjw, + Jiw,. (2.4)

Here af, is the vector of spin velocities of the rotors. The total angular momentum with respect

to the inertial frame is given by.
(2.5)

From (2.5) it follows that,
(2.6)

Al + Aghy = Jiaw, + Jlw).
Since there are no exiernal torques on the system A, = 0. Also substituting for A, from the
kinematic eguation (2.2) we obtain,

J2Gh, + Jids = S(e0.)Ah,. (2.7)

Now let

denote the vector of internal torques exerted on the retors. These could be motor torques or
damping torgues. In either case, from Newton’s law we have,
(2.8)

Jila, +ap)=—2z,
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or equivalently
Joay, = —Jld), — z,. (2.9

Subtracting equation (2.9) from (2.7) one gets,

(Ji = Jy, = S(w)A b + 2o (2.10)

The complete system of kinematic and dynamic equations for the case of rotors with torques
may be summarized (after further substitutions) as follows (note: 6 is the vector of rotor

angles):
Ay = S(0,)A (2.11)
& = w; {212}
(s = Iy, = S(w) [Jiw, + Tjwi] + 2, (2.13)
(2.14)

oy = = JUJY = I Nzg = TS =I5 TS (wa) [V d g + T ).

As is clear from the above, the dvnamics of the rotors and the dynamics of the body are
strongly coupled. It is remarkable that matters simplify considerably in two important cases:

Case (a). The torque z, is such as to maintain the rotors spinning at constani angalar velocities.

From equation (2.8), by setting @] =0 we obtain,
Zq = '—Jéd)a- (2]5)

The requisite torque law (2.15) is achieved by using motors coupled to anitude sensors or

other devices. We therefore refer to this case as the driven rotor case. In order to avoid
confusion, wherever we refer to the driven rotor case we wili use the superscript w (for wheel)

instead of the superscript r.

Case (b)}. The torque z, is a damping torque on the rotors of the form.
(2.16)

Z4 = ae)

where o = diag (a1, as, as) is a diagonal matrix of nonnegative elements. We refer 1o this case
as the free-spinning rotor case. For the purposes of defining the Lie-Poisson structure for this
case we will set a= 0. Again, 10 avoid confusion, whenever we refer to the free spinning

rotor case, we will use the superscript d instead of the superscript .

2.1. Equations for the driven rotor case
Let h, =Jiw, and h, =J;w;. The substtunion of (2.15) into {2.13) and (2.14) vyields

imimediaiely.

Be = S ) [hy + ) (2.1.1)
h.=0. (2.1.2)
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in Section (4) we will show that these are precisely in Lie~Poisson form for the Lie algebra
so(3) B R

2.2. Equations for the free spinning rotor case
Define J £ JY—=Jg Also, let A, = Jw,; hy =J%(w, + wf). Making the substitution,

2, = aew?
in equation (2.8) we get
ha= — awt. (z.2.1)
Now observe that,
i, + Jiwl = (I} — I8, + T w, + wf)
=Jw, + Jiw, + wf) (2.2.2)
= #, + ha
Substituting this in equation {2.13) we obtain,
b, = SO )Ry + hy) + oot (2.2.3)
Now
awf = aJf 1T wd
= @i Wl + wg) — Jw,)
(2.2.4)

= JI M, ~ ww,

il

aJi V- aw,

ali V- ol A,

i

Substituting from equation (2.2.4) into equations (2.2.1) and {2.2.3}, we get the system,

h.{, = S(Jr_lhu)[hl, + f’id} - '}’/’lL “+ (Sha' (225)

ha = vh, — Shy

where the parameters are, §=a(J§}}, y= a(J) L, J =78 - J&

The svstem (2.2.5) determines completely the dynamics of the free spinning rotor case with
fiamping Secondly. we see that when there 15 no damping {i.e. a = { and hence, y= Q=
8. the equations (2.2.5) are identical in form 1o equations (2.1.1) and (2.1.2). This will imply
that the Lie~Poisson siruciure of the free-spinning rotor case with no damping will be ideniical
10 that of the driven rotor case. However the quantity A, will have different meanings in these
two contexts, because of the different scalings of @,. A similar remark applies to A, and h,

{00.
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3. LIE~-POISSON STRUCTURES: GENERALITIES

First let us recall the following classical fact:
Let R? be the Cartesian space with coordinates (g, © * gn, P1. - pa). Let F(R*™) denote the
space of smooth real-valued functicns on R?¥. This space can be given the structure of an
‘nfinite dimensional Lie algebra over the reals by defining the bracket (known as Poisson
bracket)
_ v (8 g _ of ég) 2
(o= (228 -0 ) fge R,

This basic fact and its consequences lie at the heart of classical mechanics in R, If we wish
to understand mechanics in other spaces, it is pertinent to ask to what extent the notion of
a Poisson bracket generalizes t¢ other spaces of functions besides F(R™). There are several

generalizations available.
(1) (M, w) is a sympiectic manifold, i.e. M is a smooth manifold of dimension 2, and w

is a closed, nondegenerate 2-form on A, Thus

w: Vect(M) x Vect{M) ~» F(M)

is an F(M) bilinear skew symmetric map where F(M) is the space of smooth real valued
functions on M and Vect{M) is the space of smooth vector fields on M. Nondegeneracy implies

that w(X,Y) = 0, VY € Vect{(M) > X = 0. Further dw = {.
The Poisson bracket of two function f, g € F(M) is defined in the following way: first

associate with f, a vector field Xy by requiring that the relation.
(X, Y) = df(Y)
hold for all Y € Vect (M). Then the Poisson bracket is defined as
{-, 1 F(M) x F(M}—F(M) (f.g) =g = o(X; X

It follows from the properties of w that {(F(M), {+,-}) is a Lie algebra. The Poisson structure
{.,-}is said 10 be nonsingular since it is associated with a nondegenerate form w.
0Odd dimensional manifolds do not admit symplectic structures. To cover this case as well

one has the further generalization.
(2). (M, @) is a cosymplectic manifold i.e.

@ QUMY x QUM)— F(M).
is an F(M)-bilinear skew symmetric map and QM) = space of 1 forms, and the foliowing

condition holds:
the bracket {-, - }: F(M) x F(M)— F(M), (f. f2 — o(df:, df2.

satisfies the Jacobi identiny
Ui fah fsb + Win fah i = W fi fal =0
Clearly every cosymplectic structure gives rise to a Poisson structure on F(M). Cosymplectic

structures appear first in the work of Sophus Lie (see the remarks by Hermann in [5]).
The local coordinate representation of a cosymplectic structure is useful. Let xy, x5, . .

vy Xn
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be local coordinates on M and let dx;, . . ., dx, desote the corresponding differential forms.

Let, -
o(dx;, dx;) = @y(x)i,j=1.2,. .. n

Then the corresponding Poisson bracket is,
(=22 ax ﬁfi?@. (3.1
i ax; 90X,
The Jacobi identity imposes additional guadratic conditions on the skew symmetric matrix
(@(x)). The rank of a cosymplectic structure at x € M is just the rank of the matrix
(@y(x)). A cosymplectic structure is said to be nonsingular if rank (@,(x)) = constant =
dim(M) = n. Nonsingular cosympiectic structures may be dualized to obtain symplectic struc-

tures and hence arise only when n is even.
The cosymplectic structure of central interest is the one that is associated namrally with Lie

algebra ¥. We discuss this beiow,
(3). Let £ be a Lie algebra. Let £¥ denote the dual space of linear functionals on £, We

think of ¥* as a cosymplectic manifold in the following way:
If ¢, @ & F(¥*) the space of smooth real-valued functions on ¥%, we define the Lie—Poisson
bracket of ¢ and v to be {¢, y} satisfying,
{o. v} (F) = (L. U D&Y, (DY) (3.2)
Here f € %*, (D¢)y is the Fréchet derivative of ¢ at f viewed naturally as an element of &,
and similarly for (D), and {f, & denotes the evaluation of the linear functional f at

e
: It is possible to obtain other Poisson structures on F(£*) with respect to special decom-
positions & =a + b into subalgebras (see the papers of Reyman and Semenov-Tian-
Shansky [15, 16], Ratiu [ 14], Kupershmidt and Manin [12]). However the structure (3.2) is
natural for two reasons both having to do with coadjoint orbits. Since these are relevant to

our problems we discuss these below.
A Lie algebra & acts on its dual £* by the coadjoint action ad™:

ad* + £ X F* > F*
(& f)—adtf
(adi fY(m = {f.1& ni) (3.3)
foré,ne .

By exponentiating ad* we obtain an orbit in £* passing through f which we denote as Cy.
These are known as coadjoint orbits. We have the following facts,

Fact 1. All orbits Gy are even dimensional and carry a natural symplectic structure @ known
as the Kirillov 2-form (since it appeared first in Kirillov's work on the infinite-dimensional
representation theory of nilpotent groups: see Kirillov [10] for details). At f &€ €, TAG)) the
tangent space is isomorphic to #/Z; where Z;= {£€ 4 ad; *f = 0}. Letting [§]. [&] € ¥
denote the equivalence classes (tangent vectors) of &, & at f, w is defined at f as

wl&y, &) = (f [[&]. [&]]- (3.4)

Elsewhere w is given by translation of w.
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Fact 2. The natural transitive action of ¥ on @; by vector fields leaves o invariant. Thus to
each £€ $ad* associates a (globally) Hamiltonian vectorfield on G

Fact 3. The symplectic manifold (€, w) has a Poisson structure {-, - }s.,. On the other hand.
we can restrict the Lie-Poisson structure {-, -} defined by (3.2) to functions on the orbit {;

and denote this as {-, - };. We have the equality.
[ he={.Jr {3.3)
This is our primary reason for thinking of {-, -} as defined by (3.2) to be natural. See also

Kostant’s paper [11}.
There is a second reasen for the naturality of {3.2). Suppose H € F{¥*}. Consider the

Liouville-type equation,

99 _ !
2 {H, 0} (36)
Let £: = {X,....X,} be a basis for the Lie algebra &. Let{T), i,j. k= 1,2... ., n} denote
the set of structure constants for & in this basis, i.e.
[Xi, %] = 2 ThX.. (3.7
Let %: = {f, fr, . . -, [} denote the dual basis for &, i.e
f{ X} = & the Kronecker symbol.
% has global coordinates (x;, . . ., x,)} with respect to the basis {f;, . . ., f.}. If we let these

coordinate function obey the Liouville-type equation (3.6) with respect to some A then we

obtain a systemn of differential equations,
dxi N ] aH

R P i :12, . 3.
de 577 ax; : i s (3-8)

We call this system the Lie-Poisson system associated to the triple (¥, X, H) or the triple
($*, %, H). The vector field on ¥* associated to equation (3.8) is denoted as Xpu.

Fact 4. The vector fields Xy defined by (3.8) leave invarjant the coadjoint orbits in £* and
the Kirillov 2-form on an orbit, when restricted to that orbit. This is essentially a consequence
of (3.5). What this implies is that Lie~Poisson equations of the form (3.8) define (globally)
Hamiltonian systems when restricted to an orbit. The corresponding Hamiltonian is given by

the restriction of H to that orbit.

Remarks. For the proofs of results about symplectic manifoids, coadjoint orbits and Poisson
structures. see the standard references. Arnold [2]. Abraham and Marsden {1]. Kirillov [10.
chapter 15] and Guillemin and Sternberg {4]. The treatment of singuiar cosymplectic structures
is not so accessibie, however see Hermann [S] and the references therein. For Lie-Poisson
structures and equations, see the earlier mentioned papers of Reyman and Semenov-Tian-
Shansky, Ratiu and the paper by Holmes and Marsden [6]. The last-mentioned is most
germane 1o our work since it treats problems very closely related to our work {including the
spinning top in gravity and the rigid body with asymmetric rotor with a model Hamiltonian).
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Given a systemn of differential equations how does one recognize it as an equation of the
Lie-Poisson type? From our discussions, it is clear that there are three ingredients to this

problem,
(i) Identfy the correct Lie algebra ¥ {or its dual £¥),

(ii) Identify the correct basis X for & (or the dual basis % for ¥£*).
(iii) Identify the correct Hamiltonian, H (up to a function constant on a coadjoint orbit).
In the next section we carry out these identifications for both the driven rotor case and the
free spinning rotor case with no damping. An easy example is given by the standard Fuler
equations for a rigid body (about principal axes)
(Jo —J3)
Jads
Sy T
(s =) (3.9)

(R
iJa

. 7~ J
mgzmimzxﬁm}zﬂ.

f?"i] = T3

Here ¥ = s0(3), the basis X for & is the standard one { X, X,, X3} satisfying [Xi, X2] = X;.
[ X, &3] = Xy, [ X3, Xi] = X, and the Hamiltonian

H“—”ﬁmkméntﬁé
A 2 24

see Holmes and Marsden [6].
The vector field Xy specified by (3.9} leaves invariant the coadjoint orbits in so*(3). In the

basis dual to X these orbits are the spheres

cenired at the origin in s0{3)*.
If ¥ is an abelian Lie algebra its coadjoint orbits are simply points in ¥*, since the action

(3.3} in this case s trivial. For some more concrete examples of coadjoint orbits see Guillernin
and Sternberg [4]. See also the paper of Weinstein for recent results on Poisson structures

[23].
4. LIE~POISSON STRUCTURE OF RIGID SPACECRAFT WITH DRIVEN OR FREE-
SPINNING ROTORS
In this section we follow the general procedure outlined at the end of Section 3.
Let & = s0(3) & R’ be the direct sum of the Lie algebra of So(3) and the Lie algebra of 77
the 3-torus. Let X = {M;, M2, Ms, Ly, L;, L3} denote the standard basis for & obeying the

commutation rules.

fM],Mg} :.M'g
fM2>M3] “M;
[Ms, My} = M; (4.1)
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Define a new basis ¥ = {M;, Ma, Ms, Ly, L,, La} by setting,
Mi=M =L, . {4'2}
Li=1L, i=1,2,3.

With respect to this new basis X, the commutation rules become,

[M17M2]: {M] "”»{:zaMz““Lz}

:{MI:JMZ‘]

=M3

= Ms+ Ls

Ms+ Ls, (4.3)
[My. Ms] =M, + Ly,
[ Ms, My] = My + L,
[L!‘,L}]m@, I‘,jxl, 2’3

{M,‘, LJ} =,

Deﬂ@te, X = {X}, Xz, ey Xé}
where,

Xi= M, i=1,2,3
X,’*L,‘-g 124,5.6

Then the structure constants for £ in the X basis are,

Ij=0 ,jE€4.5,6}
rk=0  i€1{1,2,3,/€{4,5,6)

Now let & denote the basis for £* which is dual to & in the sense of Section 3. Denote the
corresponding coordinates for X£7 as

(‘x]yxZ: X3, X4, x5$x6) == (m 1, By, 13, !1: 12? I3)
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For any given Hel (%), the Lie-Poisson equations (3.8) take the form {with reference to the
triple (£, X, H)):

) aH oH
[ o -+ R a "
H1, Py {ny + 1) Py (re3 + 15)

) ) d
= {(ms + I3} — R(m; + 1)

i

(4.4)

3

af aH
s=—{m; +4)—— +
Toomp (i +4) om, (m2 + &)

4.1, The driven rotor case
Referring to Section {2.1) let M € O(3) be such that

MJIM = A = diag (4, Az, A3
A;s are the principal axes moments of inertia. Define A, = M'h,; A, = M'h,. Then equation
{2.1.1) and (2.1.2) take the form,

Bo=S(A ) A, + B (4.1.1)
Hy = 0.
More explicitly, if we let,
"y h
ho=lmlih, =11
7 I3

then, (4.1.1) reduces to,

.o iy
y === (my + b)) = —(ms + I5)
Az Az

. 4]
ty =~ 2 (g 4 1) + L (4 1)
i P
ity = T2 (my 4 1) = 2z + 1) (4.1.2)
& ]
I, =0
jg =(
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These arc precisely the Lie-Poisson equations on X7 = s0*(3) @ R? given by equation (4.4)

if we set,

2 2 2

iy [ 3

HAH, = —+ = =, 1.3
—— 2/1] 21‘12 2)‘.3 (4 1 )

Thus H,, is the Hamiltonian. It is obvious that,
H, = $(h,, (J2y he)

Now H, has the following physical interpretation:
Total kinetic energy of the spacecraft

E = Mg, JEwy) — Hwe, Jlwa) + H{w, + o), Ji o, + @)
= Hw,, Jiw) + sy, Jiwd) + (we. I )
= 3R, IR+ W R, 7 hy) {0, S W)
=H,+ W+ Q,

W = wheel kinetic energy relative to platform = constant.
The quantity ¢ = (@, J7wy } has the following interpretation

40
dr

= (g, Jiw?) + (e, S0}
=0+ (S @, )
= {mzﬁt w:)
= rate at which motor does work on the rotor.

Thus, ( is the (conservative) enmergy siorage function associated to the supply rate
{—z,, @y in the sense of Willems [18]. Thus the Hamiltonian 18

H,, = (total kinetic energy — storage function}
— (kinetic energy of wheels relative to spacecraft)

The second term on the right is a constant on the trajectories of the Lie~Poisson equations
(4.4) and as such is immaterial. It seems that the Hamiltonian H,, is what Hubert calls core

energy [8].

From Section 3 we know that the trajectories of the system (4.1.2) leave the coadjoint
orbits invariant. What are these orbits? )

For ¥ = so(3) & R°. the orbits in the basis dual to the basis & are precisely the products.

{(1’?11,]’?12,}’}13}:7?72%*% if‘h%"‘i' iﬁ;i ‘HE} X {([3, [2,[3)} C se 3(3} o R ?. (414}

The first factor in (4.1.4) is a sphere of radius u centred at the origin and the second factor
is a point. Thus we get a 4-parameter family of 2-dimensional orbits and 3-parameter family

of 0-dimensional orbits.
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With respect to the basis in X£* dual to X, the coadjoint orbits look like the products,
{(ml, iz, m;,); (m; + 11}2 + (mz + !’2) + (m3 + 13)2 = yz}x {(L’b 32, 13} } (414)

Thus the spheres are now centred at the points (=/, —l, ~h).
Recall from Section 2, equation (2.5) that,

A= Ak, + h,)
Thus jjAlf = A, + k.l = w. constant, since A is constant and A, € SO(3). On the other hand,
t = Mk + i F = [ M (R, + R [P
= Ay + b
{since M € O(3))
= (my+ L)+ (my+ 1)+ (ms + B)2
Thus invariance of coadjeint orbits is a consequence of the conservation of the norm of the
total body angular momentum. We call the invariant sphere,

{m,- -+ [1)2 -+ (m'z -+ 12)2 -+ (;‘?’13 -+ 1,3}2 = auﬁ,

the momenium sphere. We have the following,

THeEOREM 4.1.1. The dvnamics of a spacecraft with three driven rotors maintained at constant
angular velocities is given by equations (2.1.1) and (2.1.2). The corresponding flow leaves
invariant the momenturn sphere,

Thy + B 7 = .
When restricted to the momentum sphere, equations (2.1.1) and (2.1.2) describe a Hamiltonian

system with Hamiltonian,
H.=(h,, j:ijhv}v

Remark 4.1.1. The symplectic 2-form on the momentum sphere ||, + h,.|* = u, is the pullback
of the Kirillov 2-form on_the momentum sphere [[A, + 4,{° = 4* under the mapping h,—
M'h, = hy, h,— M'h, = h,. We leave the reader to verify this.

4.2, The free-spinning rotor case
Consider the free-spinning rotor equations (2.2.5) with damping parameters v, & set to zero:

hy = S(J " h) Ay + 1y (4.2.13

h'dzO.

These equations are formally identical to the equations of the driven rotor case. Thus the

changes of variables,




P. 5. KRISHNAPRASAD

124
with M € O(3) satisfying,
M'IM = A = diag(Xy, X3, Js)
bring the equations (4.2.1) to the standard Lie-Poisson form (4.4} associated to the uiple
(s0(3)® R*, X, H), where the Hamiltonian,
HAH, = 4{h,,J 'h,). (4.2.2)
We have,

THEOREM 4.2.1. The dynamics of a spacecraft with three free-spinning rotors with no damping
is given by (4.2.1). The corresponding flow leaves invariant the moment sphere

Hhv + hd{gz = !15

When restricted to the momentum sphere, (4.2.1) defines a Hamiltonian system with the

Hamiltonian
Hy=3{h,.J h,).

Remark 4.2.1. 1t is remarkabie that although the driven rotor case and the free-spinning rotor
case describe quite different physical situations, they share the same underlying Lie—Poisson
structure. Note however, that different moments of inertia enter into these structures.

Remark 4.2.2. The total spacecraft kinetic energy

= My, JEw,) — Mg, Jew,) + H{w, + 0f), JHw, + o))
= §(hy, J Thyy + Hhg T8 Ry
= H;+ D.

Thus the Hamiltonian for the free-spinning rotor case is
H, = (total kinetic energy of spacecraft)
~ (kinetic energy of wheels relative to inertial frame).
It is thus clear that H,; and H,, have quite different physical interpretations.
Remark 4.2.3. The quantities #1,, and Ay have quuite different physical meanings. Thus A, =

rotor angular momentum relative to body axis and h,; = total body angular momentum —
body angular momentum contribution due to the platform alone.

Remark 4.2.4. The quantities g, and gy, are determined by initial conditions alone and are
constant due to the absence of external torques.

In the driven rotor case, if we lock the rotors, i.e. &, = U, then we obtain the classical Euler
equations of a rigid body. In the free-spinning rotor case, if we lock the rotors and let
J;—> 0 we again get the classical Euler equations. In either case the critical point structure of
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H,.(H,) is well-understood. (See Abraham and Marsden [1, chapter 4, pp. 360-368]). In the
present context &, and A, play the role of parameters. By spinning up the rotors to desired
angular velocities and by maintaining these velocities, ki, can be made 1o take whatever values
we choose {within engineering limitations). If the free-spinning rotors are initially locked (say
when the spacecraft enters into orbit) and then released, then A, = J/w™ ¥ where @i™tal jg
the initial spacecraft angular velocity. By choosing wf™*® and J, appropriatedly we can adjust

the parameter #,. This suggests the probiem of the next section.

4.3. A problem in elementary Morse theory
Given a constant ., (Or uy) is it possible to choose A, (or k) such that H, (or Hy) is a

perfect Morse function, on the momentum sphere |, + ,[F = 1 (or |k, + haf* = 47)? Recall
that a perfect Morse function on a sphere is a function that has precisely two critical points
(which are necessarily a maximum~minimum pair). See the paper of Bott [3] for a beautiful
overview of the subject of Morse theory.

Confining ourselves to the driven rotor case, we shall assume first that the body axes are
principal axes and the associated moments of inertia are Ay, Ay, A satisfying A4y > A > Az,
Then our problem takes the form, of finding /;, I,, {5 such that the function

2 2 2
my w1 i
= . P =z

C2h 24 24

has exactly two critical points on the sphere
Sﬁ (m; + [;)2 + (mz + 12)2 + (ms -+ !3)2 = ,‘.12.
{Assame u > 0.) Recall that, since the Hamiltonian vector field X, on the momentum sphere
determined by the symplectic form e on the sphere satisfies,
dH(Y) = w(Xy, Y).
it follows that d# = 0 on the sphere precisely when X}; =0, Thus the critical points of H on
Sﬁ are determined by solving the simultaneous equation,

mz(m; + 1) _ ma(ms 4 bs)

Az };2
my(my + 1) my(ms + 1)

/3 A (4.3.1)
Mol + 1) ma(my + 1)

(my + 1)+ (my + LY+ (ma+ )= 12

Now consider the dual-spin case, i.e.
iy =0, =0, =1 In this case the possible roots of (4.3.1) are listed below:

Dm=0,m=0,my=pu~1{

(11) mlr{},mg=0,m3=—u—!
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(i) 1 = o -

(i) my = = \f/” B (Al—f‘u

{4 2 1
(v) my = 0,z = \/-”2“(;2—21) s = ]
- 3 Vi Al

. [ iy \2 Ih;
(v:)mlzﬂ,mz—‘—”\/‘u "'“( ),M3mm—f,

Az = As, 3

Suppose that,

e Ay — As\2

;"5> ( 7 ) . (4.3.2)
Then since, A; > A > Az it follows that

[2 ;‘-2 - ;v3 z

;5> ( 7 ) . (4.3.3)

Conditions {4.3.2) and (4.3.3) then force the roots (iii)-(vi) to be nonreal roots and hence
these have to be discarded. We have.
TueoreM 4.3.1. Let

'.i
- 2
my s
H = 2_21‘ Jh > A Al
T=1 .

Ay

l 2 () B A 2
G057
H A
then there are precisely two critical points of the function A on the momentum sphere,
iy = (0,0,#"[)

me = (0,0, —— 1)

(u=1)°
Ths

I

(u+ 1)
2k

H(m,) = Him_) =

if { > 0, m, is the minimum and #. is the maximum. If / < 0, m. is the maximum and mi_ is

the minimum.

The conclusions of theorem 4.3.1 appear in (8] in a slightly different form. A comparison
with his calculations should convince the reader of the efficacy of the Hamiltonian viewpoint.
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Suppose we are again in the dual-spin case but the body axes are not principal. Then
the changes of coordinates i, —> M'h,,, h,— M'h, where M € O(3) satisies MJEM = A =
diag (41, A2, A3), & > A2 > 43, bring the critical point equations to the form (4.3.1) where,

n] 0
Lij=M'0].
fsj {
Now suppose that, M’ is of the form,
[+ = 0
M=% * 9 {(4.3.4)
L* * s

Then we are clearly in the context of theorem (4.3.1) and replacing / by s3] we again obtain

the conclusions of that theorem for the nonprincipal axes case.
In general the matrix M’ does not take the form (4,3.4) and we are forced to investigate

the full-fledged 3-parameter problem associated to equation (4.3.1) in order determine the
perfectness of H. This study is carried out in [20] the results of which are summarized in the

-y
. AL

for dual-spin spacecraft appears in several places in the aerospace literature. The intuition
behind this is the following: Suppose the dual-spin spacecraft carries an additional damping
mechanism (many such damping mechanisms including mercury-ring dampers, eddy-current
dampers, wheel dampers, etc. are briefly discussed in the book edited by Wertz [17]), then
one might expect the dynamics of the spacecraft to follow a trajectory on the momentum
sphere which decreases the function #, Such a trajectory will then converge to the unique
minimum on the momentum sphere if the design condition

)= ()
M A

holds. This will then complete the dual-spin turn.
The key idea here is that the Hamiltonian 4 itself be a Lyapunov function in the damped

case and that the momentum sphere be invariant. In the next section we show that there is
no lirear damping mechanisr which will achieve this,

appendix.
The design condition

5. DAMPING: A NEGATIVE RESULT
Consider the Lie-Poisson equations {4.1.2) for the driven rotor case as a system of the

form.

m = f(m)
i=0. (5.1)
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We can treat the effect of damping as a perturbation of the equation (5.1) by a vector field
of the form g(m) and we write the damped equation as,

m = f(m) + g(m) (5.2)
i=o.
(a) The condition that the perturbed dynamics leaves
(g + L)+ (o + LY+ (ms + I:)? = u* invariant requires that the follow
(m+1,g(m)) =40
(b} The condition that # decrease along trajectories of the perturbed dynamics requires

that the foliowing hold:

the momentum sphere
ing hold:

(5.3)

(m, A™'g(m)) <G {5.4)
{c) Now assume that our damping mechanism is finear i.e.
g{m) = am (5.5)
where ais a 3 X 3 matrix.
Conditions (5.3) and (5.4) take the form:
(m+1 amy=10 (5.3)
(5.4)

{m, A o) <

e further postulate that properties (a) and (b) hold even with the rotors locked

(! —(:d%)ifa:d for all values of spacecraft momenta m, then (5.3)" and (5.4)' imply that
a=—ga
WEATa—ar <0, (5.6)
~ Setting.
0 o —
a=|l-a O s (5.7)
@ 0
we find,
0 @Yz TV
W= ay: 0 @y (5.8)
—dYi A¥n 0
where -
vz = Ay — AL
o= A5 g (5.9)

S NS
i3 = A At
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The conditions A; > 4z > 43, imply that yp, < 0, ¥ < 0, v3 < 0. With this in mind we find by
appealing 10 a theorem of Ganimacher [19, Vol. 1, pp. 308] that any matrix W of the form

(5.8} is negative semidefinite iff a; = a, = g3 = 0.
Thus we conclude that a linear damping mechanism that depends on the spacecraft momenta
alone and leaving invariant the momentum sphere with the Hamiltonian playing the role of

a Lyapunov function does not exist.
It is clear that a careful study of damping in spacecraft is necessary. In the next section we

carry out such a study and prove a stability theorem.

6. SPACECRAFT WITH DAMPED FREE-SPINNING ROTORS AND DRIVEN ROTORS
First recall that if the rigid spacecraft carries only 3 free spinning rotors with damping, then
from Section (2.2}, the governing equations are,

ﬁ(_xS]*i) s wl ™ VR A+ 8
U7 hojlhe + hu] — vh + Shy (6.1)
ﬁd = ykb - 6hd>
where J =J; ~J{, &= al{ " and, v= aJ"!. Recall that,
hy = ALk
—_ FU : a &
Jawa ™ Jrz 4l (62)

= (1~ T w, + T w, + wd)
= ]’il: + ]’ld.

Since fi; = constant (no external torques},
{7, + kgl = constant,

Thus the flow of (2.1) leaves invariant the momentum variety,

My ={(he, ha): [he + bl = 12}, (6.3)
M, is a sphere-bundle over R>.
The total kinetic energy of the spacecraft is (see remark 4.2.2),
EAL(Ay, hy) (6.4)
It is not difficult to check that along trajectories of (6.1),
dF
= = (ol awl)
(6.5)

= = TRy~ i Ry, (T T, — T8 )
The energy function E is thus a Lvapunov function for the damped free-spinning roto:
dynamics. The sublevel sets £. = {(h,, hy): E(h,, hy) < ¢ and 4, + halff = p?} are positively

iavariant and compact.
On inspecting equations (6.1), it becomes clear that the equilibrium points are given by the

following procedure:




1630 P. §. KRISHNAPRASAD

(a) find the roots of the system
SRy =0
Hal = s

(6.0}

(b} then
(6.7)

S = {(hy, ha):ho = JIE Ry ha = T8 By

is the set of equilibrium points.
If the damper moments of inertia are tuned so that /7 has distinct eigenvalues then X has

six isolated points. Further,
(6.8)

Ey = #{ izv: JGUHIEJ-
Using this formula (or Arnold’s formula, see Arnold [1, p. 329, theorem 9], the stable critical
points can be identified.

For the purpose of understanding the dual-spin turn it is necessary to consider a spacecraft
with two sets of 3 rotors each; one set free-spinning with damping and the other set motoi-
driven with constant (adjustable) angular velocities. In this case the governing equations are.

Ry = SO ) e + he + ] = vha + Ok

hy = yh, ~ Ohg (6.9
A, = 0,
where,
hy = J(w, + wf) {free rotors)
b, = J ws (driven rotors)
h, = Jw,
where, J =J¢ — J&; Ji = spacecraft moment of inertia with all rotors locked; y=aJ ', §=
ng coefficients of the free-spinning wheels.

@74~ 1 and ais the diagonal matrix of positive dampi
The total kinetic energy of this spacecraft is given by,

E % E(he, ha)
= ey, 1) — Mo, Trwg) + M(wg + wl), T, + k) (6.10)
= Nevg, TE0,) + H(w, + WD w, + wl))
= Kby, J )+ B I ) 3R T R + O

where Q ={ w, J;wy). Now the quantity O is what we call the storage funciion since,

Q s (.]M(.{) w>
df a s (‘J(l
(6.11)

= (_Zas w;)

= work done by motor torque { — z,).
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Consider the function,
V=£-0 (6.12)
= 30, T TRy + H, TE T ) Ry JE Ry
It can be verified that along trajectories of (6.9),

dvm -1 d-1i -1 d—
d; - <(J hu—-‘]a hd)? (k(] hija lha’)>
(6.13)

= — {wf, o).

Thus V' is a Lyapunov function for (6.9). Now the trajectories of (2.9) leave the momentum

variety
{6.14)

o=y =0 Gf

My = A{(ho, ha): i + hg + by P = 18
MY 1s a 5-dimensional manifold. Observe that dV/dr vanishes iff J™i4
vh, = 8hy. Define,
P . w dv ;
Re=A{lhy, bg) : (hy, hy) €M} and “&";"(hmhd) =0}

It can be checked that,

R=Alhp ) chy =W Yy hy =798 %, and Ay + kP = 42 (6.15)

Thus the set 2 has the geometry of a 2-sphere embedded in the momentum variety.
Next, note that the set of equilibrium points of (6.9) is given by, )

2= Ao b by =10 R hy = T88 s A, + kP

=W SUET )R, +h,) =0} C G (6.16)

From the calculations in Section 4.3 and the more complete results of [20], see also appendix,
it 1§ ;}ear that it is always possible to choose A, {perfectness conditions) such that Z ..k, has
precisely two points. For exampie, in the dual-spin case, with principal axes as driven rotor

axes.
he = (0,0, 5) (6.174a)

= diag(ﬁ;, /12, }2.3)

- (22

M, \ (5]

and the perfectness conditions are

and (6.17b)

G550
i Az

Next we determine the largest (positive and negative time} invarignt manifold M contained
in .




P. S. KRISHNAPRASAD

1032

LEMMA 6.1, M=Z,:,

Proof. From (6.9),
vh, — Ohg = ySU R ) [hy + hat by = ylvhy - Sk — S[yh, — k4

Since, in R, yh, = Shgand M is invariant, it follows that.

vh, — 8y =0 in M.

Hence
M- {(hv, ha): SU )y + by + R =05 oy + ha + B[P = ﬂ:}
vh, — hg =0 '

But this is easily verified to be
Zoh,. B

Finally note that for any ¢ =0, Vi) CMy is positively invariant and compact. We are
now ready to apply LaSalle’s theorem {22]. Recall its statement:

.) Let V(x) designate a scalar function with continuous

THEOREM [LaSalle]. (See [22, p. 58]
)= ¢. Assume that Q. is bounded

partial derivatives. Let Q. designate the region where V(x
and that within Q.
V{x)>0 for x#0

Vix)<0
~along trajectories of the equation #=X(x). Let @& be the set of points within €2, where
V(x) =0, and let M denote the largest invariant set in ®. Then every solution x(¢) in €2, tends
to M as t— «.

In the present contexl,
Q. =V )N M;

@ and M are as above. From the conclusions of lemma 6.1, we have the corollary,
CoRrOLLARY. All solutions of (6.9) converge to one of the equilibrium points in
b

Now with the additional hypothesis of perfectness (such as for example (6.17)), one of the

nts is a global minimum for V on M}/ and the other equilibrium point has

two equilibrium poi
in a codimension 2 manifold)

an unstable manifold of dimension 2. Only a thin set (contained
of trajectories converges to the latter. Thus we can conclude
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THEOREM 6.1. In the dual-spin case with perfectness, all but a thin set of trajectories converge
to the global minimum of V on M,.

7. CONCLUSIONS

This paper was motivated by the problem of analytical verification of certain design conditions
for dual-spin spacecraft known to aerospace engineers. To this end, we have carried out a
study of the dynamics of spacecraft with driven and free-spinning rotors. We have determined
the underlying Lie-Poisson structures for such spacecraft. The Hamiltonian viewpoint is
particularly useful in obtaining and generalizing in a very complete way the above-mentioned
design conditions (see Appendix and [20]). However the damped case is much more subtle
than simply finding conditions for perfectness of the Hamiltonian (see Section 5). We have
proved in Section 6 (for the first time) an asymptotic stability theorem for the dual-spin

maneuver in the presence of a suitable damping mechanism.
We suspect that the theory of Lie-Poisson structures is a natural tool for the analysis of

more complex multi-body spacecraft than the ones treated in this paper.
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APPENDIX {BASED ON JOINT WORK WITH C. A. BERENSTEIN)

In this appendix we summarize the perfectness conditions of [20]. The conditions given below generalize the results

of Section 4.3 to the case of nonprincipal axes and three driven roiors.
To fix notation, let J&, k.., h, be as before. Since J7 is symmetric positive definite, let M € O(3) be such that

MIEM = A = diag(hs, Ao, s).

and k= M'h and denote b, = (g1, g2, g3)° and 7 = (pr. 22, P

Let, i =R, + hu; B = MRy
for a spacecraft with three driven rotors then take the form,

The equilibrinm eguations
(A1 = Apr = Al

o o
(A1 = Ay = Af g2 (A1)
(35 = Apr= Al

pi+pirpi=phu>G

and A€ R.
The conditions for eguation (A.1) to have precisely two solutions (perfectness conditions) are as foliows

Rotor momentia Perfectness conditions

Case
1. A; al} distinet G =9, @=0 g:\? - 41 Ay
g1 9 ’“J ’( W
and
-2
H A
a=0, g¥0 < ik}t and
g3 = 0 . .
u2<( bk )ZT( hg: )2
. ;{-E - ]‘3 }'g it }:2,
@ %0 g:#0 1 < min(ga(4s ), ¢a(A5))%
gy # G
2k == A =0, g:=0 g3\F (A = A2
fa e A7 g:# 0 i A%
=0 @#0 < $3(io)§  and
gi\z_ fhx - AR
93 # 0 (*;;) /"(—-—-mm--wml* )
@G #0 ;=0 i< du(A)f and
g3\7 (ke g\
g # 0 (u) >( 1w ) and

Mgt + g5
&< 3_(4?1 44?22)
(A~ Aa)
In this case perfectness is achieved as long as one of the

Lh=h=l= A g/s is nonzero.
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, - 7 % . Ma(giAa) P 4 Ax(giAs)B
tH iy= + and 4o = -
e o T G T Ty P T e g
+ Here ¢p{A} x;ﬁi‘%ﬁ’ and A7 and Ay are the local minima of the function ¢,
on the rezl line contained in the interval (min{4;, 47, A71), max{47', A7%, A7),
4 7 As{g3he )P + Aulghds)
§ Here A) = — + = and Ag =
¢3( ) {} __ }M-B)z {1 —_ M* )2, ’1‘9 (Q%A$)13 + (q%/';3}1f3
% E o (gt + 924 )"+ Al giha) P
| Here ¢u(A) = + - an = T
| T TN AT ST (gt + @) 2a) ¥ + (329 ™

For z given u( = norm of total angular momentum of the spacecraft}, it is possible o
achieve the perfectaess conditions above by choosing g; large enough in absolute value.
This can zlways be accomplished by spinning up the rotors to high enough angular
velacities relative to the spacecraft. This maneuver will not alter u, since there are no
external torques. When the perfectness conditions hold, the resulting equilibria form
a maximum minimum pair for the Hamiltonian. In the event that there is additional
damping, we show in Section 6 that one of these equilibria is stable and is the global
minimum for an appropriate L.vapunov function.

Nate. The author would Jike to thasnk the referee for pointing out to him the paper by
D. D. Helm, J. E. Marsden, T. Ratiu and A. Weinstein, Noniinear stability conditions
and g priori estimates for barotropic hvdrodynanics, Phys. Leit. 98A, No. 1,2, 3 {1583).
This reference contains a useful technique for stability analysis using the Casimir

functions.
Also, after submitting this paper, the author came across the book Dynamics of

Systerns of Rigid Bodies by Jens Wittenburg (B. G. Teubner, Stuttgart, {1977)) which
among other things contains a discussion of gyrestats from a different peint of view,
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