J. Baillieul J.C. Willems

Editors

Mathematical Control
Theory

With a Foreword by Sanjoy K. Mitter

With 16 Ilustrations

Springer

6

A

Hum

7

\,f'-_Languages, Behaviors, Hybrid
= |= Architectures, and Motion Control
'; vikram Manikonda

PS. Krishnaprasad
James Hendler

description language, and the interaction o

integrating sets of beh
both atomic and compound behaviors in

6.1 Introduction

In two plenary lectures in Ju
to the emerging opportunitics
gramming and compliance programiming i
of Exponentials Formula, a favorite device o

which kinematic programming problems are casy,

coordinates of the second

ABSTRACT In this paper we put forward a framework that integrates features of
reactive planning models with modern control-theory-based approaches to motion
control of robots. We introduce a motion description language, MDLe,
by Roger Brockett's MDL, that provides a formal basis for robol programming
using behaviors, and at the same time permits incorporation of Kinema
dynamic models of robots given in the form of differential equations. In particular,
behaviars for robots are formalized in terms of kinetic state machines, a motion
£ the kinetic state machine with real-
time information from (limited range) sensors. This formatization aliows us to
create a mathematical basis for the study of such systems, including tec
aviors. In addition we suggest cost functions for comparing
various environments. We demonstrate
the use of MDLe in the area of motion planning for nonholonomic robots. Such
models impose limitations on stabilizability via smooth feedback; piecing together
open-loop and closed-loop trajectories becomes essential in these circumstances,
and MDLe enables one to describe such piecing together ina systematic manner. A
reactive planner using the formalism of this discussion is described. We demonstrate
obstacle avoidance with limited range sensors 45 2 test of this planner.

ne 1983 to the Symposium on the Mathematical The-
ory of Networks and Sysiems in Beer Sheva, Israel [10], Brockett drew attention
for mathematical formulation of the fundamental
problems of robotic manipulation, specifically, the problems of kinematic pro-
n grasping. He spoke on the Product
{ his, and its role in understanding
and in classifying manipulator
types. This formula of course is familiar to the reader, in the guise of canonical
kind on a Lie group and in the representation of curves

on Lie groups attributed to Wei and Norman. It is a testament to Brockett’s insight

-

200 Vikram Manikonda, PS, Krishnaprasad, and James Hendler

that ten years later this point of view has become thoroughly integrated into the
textbook literature on robotics (cf. [32]).

In the time since this influential paper, Brockett initiated and brought to suc-
cess a highly ambitious program of experimental research in robotics, leading to 4
steady stream of innovations in robotic hands, compliant fingers, tactile sensing,
new types of motors for rabotics applications, integration of vision in the loop at
different scales (as in the Harvard Hand Eye Machine), and a variety of funda-
mental investigations motivated by the settings of his experimental program. As an
example, we note that Brockett’s interests in nonholonomic mechanics had much
to do with his work on a motor based on mechanical rectification and his work
with David Montana on the kinematics of rolling contact.

One item missing from his Beer Sheva lectures was any systematic effort to
take into account how we communicate with robotic machines. The use of specific
languages tailored for interaction with machines has after all been part and parcel
of robotics technology from the days of the Unimate. Brockett apparently saw that,
to make progress towards truly “universal” robotics one needs to have a language
for motion description that is device independent—somewhat akin to the page de-
scription languages that we now take utterly for granted every time we command a
laser printer over a network to produce a complex document with text and graphics,
Brockett came to this point of view in his 1988 paper “On the Computer Control
of Movement” [12]. In this, and also in his 1990 paper [13], he articulated the
concept of a motion description language MDL. It is here that Brockett comes to
grips with the hybrid character of robotic movement. We need symbolic descrip-
tions of movement to activate the continuous signal generators that constitute all
robotic hardware. Further, the recognition that this view of robotic machines is
indeed part of a larger world of Aybrid systems, led him to his later formulation in
{14], a model that has been highly influential in the ongoing scientific programs
to understand and design Intelligent Systems.

The central ideas of control theory such as feedback and transformations into
canonical forms play a role in much of the above mentioned work. One notes
further that when computer scientists speak of reactive planning as a stage in
robot {motion) control, they are after all speaking of feedback in some high-level
symbolic sense. Increasingly one hears of behavioral styles of programming robots
{see references to the work of Brooks and others below), as well as references to
behavioral approaches to control system modeling and design (see [37] and the
contribution of Willems in this volume). These seeming commonalities do not
manage to hide the substantial gulf that exists between the perspectives of computer
science towards robotics and those arising from control science, The present paper
grew out of an effort at bridging this gulf and we argue that Brockett’s concept of
a motion description language MDL (and as exemplified in our extension MDLe)
is indeed a suitable bridge to this end.

At its highest level of abstraction motion control can be viewed as the generation
of symbolic inputs to a control system based on sensory information about its
current state, desired state and the state of the environment it is operating in. In the
case of mobile robots, these symbolic inputs are often commands such as “move,”

—_ e~ o e

P

6. Languages, Behaviors, Hybrid Architectures, and Motion Conirol 201

“tyrn,” “stop,” etc., which, along with sensor information, can then be used to

generaie more complex behaviors such as “avoid obstacle,” “trace wall,” etc.
While in many cases these symbolic inputs can be mapped into appropriate

control laws that can be accepted by the system, often with more complex systems

this requires a deep and a complete understanding of the underlying dynamics. In
fact, in many cases the nonlinear dynamics, kinematic {nonholonomic) constraint§'

and limited control authority make the generation of explicit control laws for p/ré-
cise motion control (trajectory tracking, point-to-point locomotion) exceedingly
difficult. This leaves us with imprecise behaviors which need to be altered to meet
the desired requirements. : ' - _
We argue that motion-eentrol under such situations is reduced to generating
strings of accepted symbols which can be pieced together prior to initiation of
motion and then altered “on-the-fly” based on real-time input from sensors. An
important factor for a motion control strategy of this nature is a hybrid architecture
that serves as an abstraction between continuous and discrete (symbolic) control.
In addition it is important that this framework integrate real-time sensor informa-

tion into primitive behaviors in such a way as to incorporate intelligent switching '

~ between behaviors, to facilitate planning and learning. Inputs to such a hybrid con-

trol system are symbol strings and continuous and discrete inputs from sensors.
Outputs are continuous signals to actuators. The input strings can be thought of
as being a part of a structured language [13, 31}, which is rich enough to encode
sensor information and the model (essentially differential equations), and at the
same time provide a set of rules for concatenation, switching eic.

Earlier work that discusses some of these aspects of motion control as apptied to
rohotics can be found in [1, 4, 11]. Brooks [11] uses task-achieving behaviors as the
primary leve! of task decomposition. He introduces the concept of a subsumption
architecture which is essentially a structured and layered set of behaviors with
increasing levels of competence. These “reactive” systems typically exploit domain
constraints, using clever algorithms to allow fast processing of complex sensor
information (cf. [20]). Arbib and Arkin {cf. [1, 4 and references therein) have
applied schema theory to the robotics domain. However as discussed in [1] there
is no consensus view as to what constitutes schema theory.

Although these approaches have significant advantages from the point of view of
architectural design and programming flexibility, they have resisted mathematical
formalization' and are not amenable to tests for optimality. Comparing two sets of
behaviors, even within the same task, is complex and the domain-dependent nature
of the solutions can cause these systems to be basically incommensurate—one may
fail some times, one may fail at other times and comparison is difficult.

On the other hand, control-theoretic approaches to motion control have tradi-
tionally required detailed mathematical models of the system, its environment,
and state, to design control laws/algorithms to steer the system. In addition, mo-
bile robots are often approximated as points or disks and dynarnic models assume

[However, see [23] for Robot Schema Language (RS).

-~

202 . Vikram Manikonda, P.S. Krishnaprasad, and James Hendler

perfect sensors and state information, making implementation of these algorithms
in the real world difficult. In practice, however, autonomous systems have little g
priori information about their environment, have limited range sensors and, in ad-
dition, dynamics can get complicated (see the discussion on nonholonomic robots
in Section 6.4 making the design of explicit control laws to steer the system along
a desired trajectory increasingly difficult.

The inability to effectively integrate robot model dynamics with real-time sensor
information stems from the lack of a powerful enough framework to integrate
the two approaches (control theoretic vs. behavior-based). This paper is a step
in the direction of providing such a framework, integrating features of reactive
planning with modem control-theory-based approaches to motion planning. First
we introduce a motion description language, MDLe, that provides a formal basis for
robot programming using behaviors, and at the same time permits incorporation of
kinematic models of robots given in the form of differential equations. The structure
of the language MDLe (based on Brockett’s MDL [13]) allows descriptions of
triggers (generated by sensors) in the tanguage. Feedback and feedforward control
laws are selected and executed by the triggering events. Secondly we present a
hierarchical and distributed hybrid architecture for generation and execution of
behaviors and planning aigorithms developed under the formalism of MDLe.

While MDLe and the hybrid architecture provide a formalism to capture and
express behavioral and control-theoretic aspects of a large class of systems, in-
cluding some biological aspects, we find that MDLe is particularly well suited to
the demands of nonholonomic path planning with limited range sensors. As an
example of the strength of this language, we show that it can be used to support a
reactive planner for nonholonomic motion planning in the presence of obstacles,
using limited range sensors for obstacle detection. Some background on nonholo-
nomic constraints and a discussion on earlier approaches to path planning with
nonhelonomic robots. are also presented.

6.2 MDLe: A Language for Motion Control

We treat an autonomous robot as a kinetic state machine (following Brockett {13})
which can be thought of as a continuous analog of a finite automaton. In the
framework of MDLe these kinetic state machines are governed by differential
equations of the form

i=f)+ Y giou y=h(x)eR’)

i=l

x(): R = [0, 00) > RY,

6. Languages, Behaviors, Hybrid Architectures, and Motion Control 203

#i: RtxEF — R,

(¢, ¥} > w@,y@)

Further, each g; is a vector freld in RV,
We now define the atoms of the motion language, denoted by o, as triples of

the form o; = (U;, &7, T} where
Ui = (g, um)
where each u; is as defined earlier

£ R - {01},
sy > E9s@),

is a boolean function, T € R* and s(-) : [0,7] — R* is a k-dimensional
signal that represents the output of k sensors. The value £ can be interpreted as
an interrupt or trigger to the system which is activated in a case of emergency or
change in the environment, €.g., the robot gets too close to an obstacle.
 Let us denote by 74 (measured with respect to the initiation of the atom) the
time at which an interrupt was received, i.e., £¢ changes state from 1 to 0. 2
If the kinetic state machine receives an input string

oy - -0p = (UI!E]G! T{])(Unsgr?e T:}
then the state x will evolve according to

FO+ Gy, 10 <1t < 1o+ min[T], T{1.

.
I

' - @)
i = fO+GEUs o+ +min[7, T,]
<t < Io-l—---—?-min[ﬁ“,T,f]

where G = (g1(x) - gm(x)).
Hence each atom in the input string is executed in sequential order, execution of

a particular atom being inhibited either via interrupts or a “time-out” via the timer
e,

2The definition of an atom here can be compared with thai in MDL where Brockett
treats time-outs in T, instead of giving explicit status to triggers.

204 Vikram Manikonda, P.S. Krishnaprasad, and James Hendler

We denote a kinetic state machine as a six-tuple U/, &, Y, S, k, §), where

U = CP(R' x R”; R™) is a space of control laws,
X = RY is the state space,
¥ = R” is an output space,
8 ¢ R* is the sensor signal space,
h 1 X — Y maps the state space to the output space
and
£:8 — {0, 1} is an interrupt.

As another point of departure from MDL, we find it useful to bring input scaling

into the picture. This provides considerable flexibility as will be seen in later
sections.

Definition 6.2.1 Given an atom, ({/, £2, T%), define
(@U, &%, 8TY, a=(a',...,a™) eR", BeR"
as the corresponding scaled atom and denote it as (@, S)(U, §%, T°).

Hence o scaling is used to scale each input and # scaling is used to scale the
time for which an ator is to be executed.

Definition 6.2.2 An alphabet T is a finite set of independent atoms, i.e,
(U, &9, TY) triples. Thus £ = {oy, ..., 0y} for some finite n where o; denotes
the triple (U;, £7, T/), such that o; # (e, B)(9)), forsome @ € R™, f € R* and
i=1---n,j=1---n Hence an alphabet is a set of atoms none of which can be
derived from other atoms in the alphabet via scaling.

To simplify notation in the rest of the discussion we denote the scaled atom (1, 1)a;
simply by o;.

Definition 6.2.3 An extended alphabet T, is the infinite set of scaled atoms, i.e.,
triples (o U, &7, B T") derived from the alphabet X,

Definition 6.2.4 A language L* (respectively, I¥) is defined as the set of all
strings over the fixed alphabet I (respectively, extended alphabet Z.).

Definition 6.2.5 A behavior, denoted by m, is an element (i.e., word) of the
extended language I, with an associated timer T? and interrupt £2. For
example, given an alphabet £ = {oy, 02}, a behavior m; could be m; =

(e, . Bi)oi, ey, Biy)oi, (2iy, Bis)oi) T2, £9).

The notation o;; is used to denote the jth atom in the ith behavior. Similarly
a;;, Bi; comrespond to scaling factors of the jth atom in the ith behavior.

Often we will have to work with atomic behaviors (behaviors with a single atom)
with £% = &% and T? = T°. In such situation to simplify notation we will denote
alomic;J behaviors simply by 7; = ((a;,, Bi,)o7), dropping explicit reference to £
and 77,

b-:
o
a
ai
a
3
81

P N

6. Languages, Behaviors, Hybrid Architectures, and Motion Control 205

Interrupts associated with atoms (£) are called level-0 interrupts. Interrupts
associated with behaviors (£?) are called level-1 interrupts. If a level-0 interrupt
is received while an atom of a behavior is being executed, the execution of that
particular atom is inhibited and the next atom in that behavior is executed. If a level-
1 interrupt is received while a behavior is being executed, the execution of the entire
behavior is inhibited and the next behavior (if there exists one) is executed. The
interrupts & may be results of a complicated processing of sensory information. In
the simplest case, however, they may involve thresholding of sensory information.

Since each atom, when executed by a kinetic state machine, combines in general
both open loop and output feedback controls, one could argue that our definition
of behavior captures some aspects of the essence of locomotion behavior [3], as
well as the sense in which the term is used in [11]. Further, the passage from
atoms to behaviors to plans suggests (as we shall see in Section 6.3) a layered
architecture. We also argoe that MDLe captures the salient features of various
architectures/approaches to model behaviors. Comparing it with the schema ap-
proach of [1]-4}], one observes that an atom incorporates both “motor” (controls)
and “perceptual” (interrupt functions) schemas into one unit.

The introduction of the timer T9(T?) server two purposes: (i) It serves as the
clock for the evolution of the differential equations, i.e., if an open loop control is
an input to the kinetic state machine then the timer interrupt can be used to turm
off the control at the desired time T%. (ii) It guarantees that no behavior will be
executed forever. For example if the desired behavior was “move toward a wall”
and either the sensors (used to detect the wall) were defective, or the wall did not
exist, then the timer guarantees that the atom (behavior) is only executed for a
maximum period of time T4(T?). With the introduction of scaling factors and a
hierarchy of interrupis we provide for “directed control” (the term as used in [7]),
optimization and learning. These aspects will be discussed later.

Before proceeding any further on the structure of the language we discuss an
example from Rana computatrix (also discussed in [1, 2]) to model the visuomotor
coordination in frogs and toads with the purpose of pointing out a biological
motivation/application of MDLe. Applications to autonomous robots are discussed
in detail in later sections.

Example 6.2.1 It has been observed that frogs and toads approach small moving
objects (assuming they are prey) and move away from large ones (assuming that
they might be predators). It was hypothesized that the tectum {visual region in
the animal’s mid-brain) was responsible for recognizing small objects and the
pretecturm processed visual information and determined which objects were large.
If one assumes a model in which the prey-secking behavior is activated by an
input from the tectum and the predator-avoiding behavior is triggered by a signal
from the pretectum, then a lesion in the pretectum should leave the frog or toad
unresponsive toward large objects. It was observed, however, that a frog with a
lesioned pretectum approaches both large and small objects while not exhibiting
an avoidance behavior.

206 Vikram Manikonda, PS. Krishnaprasad, and James Hendler

We model this in MDLe as follows: Define two boolean functions Stectum,
Soretectum © W — {0, 1} that process visual information from the world (envi.
ronment) W. We assume that visual information is passed both to the tectum
and the pretectum, where each evaluates Stectum An4 Spretecrum ., respectively, These
bootean functions are defined a follows:

s 1 if object is small,
R T object is large,
S 0 if object is small,
profectam Y 1 if object is large.

Further, let’s assume that we have modeled the motion of the frog, and Uypprogen
and Uteyrea, are controls that result in a motion toward and away from the prey and
predator, respectively. Let us define two atoms as follows:

“APPROACH ATOM™;

o1 = (Uapproach E?: Tla) where & fl = (Stectum V S'pretectum) and
“RETREAT ATOM™:

02 = (Urstrear, &5, Tza } where &) = Spretectum -
2

Here “v” denotes the logical OR and *~” denotes the logical NOT. Define a
behavior as follows:

7 = ((01 02)*, £°, T

where (o)02)* defines the infinite string o200 - - 0y - - -. The behavior in-
terrupt and timer are chosen to interrupt this behavior after some prescribed time
T? or via £ in case of undesirable changes in the environment. To understand the
working of the above behavior assume that the moving object was small. Hence
o1 will be executed (as & = 1 : Sieeum = 1 and S’mtecmm = 1), for a period T}
after which execution of o, will begin. But since &7 15 0 (Spretecrym Teturns a 0
for small objects), o3 is not executed and o; is executed again. This process will
centinue for a maximum period of 7% unless interrupted by £°. Now assume that
the moving object was targe. In that case execution of o will fail (Stectum = G,
S'premcmm = 0 and hence £ = 0) and only o5 will be repeatedly executed.

We observe that the behavior 77 models the response of a frog to moving objects.
It also fits with the observation that a frog with a lesioned pretectum will move
toward both small and large objects: Without loss of generality assume that a lesion
in the pretectum results in Sp,-e[ecmm = 0, ¥z, Hence we observe that o5 is always
inhibited but o1 will always be active for all moving objects. One observes that
implicit in this model is that the “approach” atom processes information from both
the tectum and the pretectum. (Compare with the schema model suggested by
Arbib),

On a separate note one should observe that the sequential execution of atoms
in a behavior does not imply that behaviors cannot be executed in parallel. It just

L

2

6. Languages, Behaviors, Hybrid Architectures, and Motion Confrol 207

ensures that the same kinetic state machine (essentially the differential equations)
does not receive two sets of conflicting inputs at the same time. A large compiex
system (which would obviously be difficult to model) could be modeled as several
(physically interacting) kinetic state machines each one of them evolving in parallel

and interacting through the behavior interrupts £o,

Definition 6.2.6 The length of a behavior denoted by || is the number of atoms
(or scaled atoms) in the behavior.

‘Definition 6.2.7 The duration T(r)of a behavior

;= (aha 161'|)(Uf|7$t'13 T1|) e (ai‘,-, ﬁi.l)(Ui.JWEi.f’ Tl])

executed beginning at time 1o is the minimum of the sum of the time intervals for
which each of the atoms in the behavior was executed and the prescribed time for
which the behavior was expected to be executed. That is,

T () = min{ (min[F9, B, T + -+ + min(T, B TED . TT (3

Definition 6.2.8 Given a kinetic state machine and 2 world-model, a plan T is
defined as an ordered sequence of behaviors which, when executed, achieves the
given goal. For example aplan I' = {sr371 7, - - -} could be generated from a given
language where each behavior is executed in the order in which they appear in the
plan. The length of a plan Tisgiven by I} = Y, |7;] and the duration of the plan
is given by T(I') = 3>, T(m).Ina particular context there may be more than one

plan that achieves a given goal.

Example 6.2.2 Consider the problem of path planning for a robot unicycie, with
a single sensor, that wanders around in a given environment without colliding into

obstacles.¢analogous to the idea of the first level of competence in Brooks [1 1.

Let us assume the task of the robot (unicycle} in this case is to wander until it senses
an obstacle. If it senses an obstacle it avoids the obstacle and continues to wander
around. We now formulate this problem treating the unicycle with its sensor as
a kinetic state machine, and find a plan that solves the problem. The differential

equations governing the kinetic state machine are

X = v cosd,
¥y = v sint, 4
0 = v, '

where (x, v) € R? denotes the position of the unicycle w.r.t some inertial frame, 6
denotes the orientation of the unicycle relative to the horizontal axis and vy and vz,
the velocity of the unicycle and the angular velocity, respectively, are the inputs to
the kinetic state machine. With reference to the standard notation (1), we identify
Uy = vy, 4z = 2, g1 = (cosd, sinb, 0) and g2 = (0,0, 1)".

To generate the *“‘wander behavior” (wander in a given environment without
colliding into obstacles) let us consider the following atoms:

S

g

Bl bk B kel R G ke i

[

208 Vikram Manikonda, P.S. Krishnaprasad, and James Hendler

o = (U1, &, T)") where

Uy = (1,00,
£ = 1 ifp=> 10,
L 0 ifp <10,
T\ € (0,00},

and where o is the distance between the robot and the obstacle that is returned by
the sensor;
gy = (U, &5, T;) where

Uy = (0,1),
a 0 ifp > 10,

52 = .
1 ifp <10,

Ty € (0,00), and

o3 = (U3, &5, Ty') where

U3 = (0,1,
g =1,
T3 € (0, c0).

Leto; = (o), o?) witheach o] € [ki, ko], j = 1.2, and k1, &y, € Rand § €
[0, o). Now consider the following atomic behaviors 3

my = (a1, B E, 1)
my = (a2, B2)(U2, 85, 1),

w3 = (o3, B)(U3. &3, 1),

Based on the equations of this robot, the behavior 7y is interpreted as “move
forward” with a velocity of all units/sec for 8| seconds, and behaviors s {or 73)
can be interpreted as “turn” with a velocity of a% (or ag) deg/sec for maximum
of B (or Bs) seconds unless interrupted. As explained earlier the atoms of each
behavior will only execute as long as their respective § functions are 1 and the
time of execution is less than T. Since £3 = 1 in the entire interval, [0, B3], once 3.
begins executing it continues until t = f3.
Consider the plan

) = {({e, B)mi(en, B2)ma))™, 67, TP}

with ey = (5,0), B1 = 100,02 = (0, =1), B2 = 90,67 = 1, and TP very large.
Observe that, if this plan is executed in the environment (with wails W1 and W2)

ISee remark on notation for atomic behavior immediatlely following the definition of
behavior

6. Languages, Behaviors, Hybrid Architectures, and Motion Control 209

w2z [—— |

I

FIGURE 6.1. Trajectory and inputs generated by the plan I';.

p—

as shown in Fig. 6.1, the robot will move forward for time 7, 1y < 1 < 2 + 100,
where 19 is the time at which the behavior was started, when & will interrupt® it
(too close to W1). Let us assume that the interrupt was received at g + ﬁ ~Fhe-
execution of behavior mr; is then inhibited, behavior 75 is picked up from the queue
and is executed. As & = 1 in the entire interval 1 € {1 + Tg, o+ T; + 90) the
robot will then turn clockwise by 90 degrees and then it will again execute 71, i.e.,
move forward, But again after some finite time wall W2 (see Fig. 6.1) will cause
&1 = 0 and hence interrupt the move forward behavior, Behavior o5 is executed as
earlier, i.c., the robot turns clockwise by 90 degrees, and now continues to move
forward. If it does not detect an obstacle at the end of 100 seconds since it began
moving forward, it will stop, turn clockwise 90 degrees, and continue 1o repeat the
sequence of actions.

Now consider the plan I's = {((a1, f1)m (@, B2)m2)*, EP, TP} with @) =
(50,0}, 1 = 2, 2z = (0, —20), and fir = 5. Observe that, if this planr is executed
in the same environment (see Fig. 6.2}, then while executing “move forward,” i.e.,
7y, in the time interval iy < ¢ < fg + 2 the roboi realizes that the obstacle is
at a distance less than 10 units from it and hence £ interrupts “move forward”
and the robot begins to execute “turn right”. Due to the choice of the interrupt
function &> the robot will now switch between “turn right” and “move forward” (a
condition referred to as chattering) and trace a trajectory as shown in the figure.
Hence depending on the choice of the motion alphabet one can generate different
plans to achieve the same task,

The question of how to generate a plan given an alphabet and a kinetic state
machine, is an open one and it largely depends on the task and the planner. In
Section 6.4 we describe a path planner for nonholonomic robots in which we
aftempt 1o answer related questions regarding existence and choice of alphabets.
Before we discuss the features of the planner we introduce some more definitions
that help formalize measures to evaluate the performance of a plan.

“We drop the superscript on £ and 7.

Vikram Manikonda, P.S. Krishnaprasad, and James Hendler

L1

i
Lehe .['..II_'_I'jL"L'L_. .- .i_.’f'Jlll'JlE':ilit.l':lll

— ul
—— uz

W I

I=:
w|
.
@
®
s
&

FIGURE 6.2. Trajectory and inputs generated by the plan Iz,

6.2.1 Performance Measure of a Plan

At first it appears that generating a plan to steer a system from a given initial state
Xo to a final state x; requires complete @ priori information of the world, which is
not available in many instances of path planning. In the absence of such complete
a priori information about the world W, the planning system has to generate a
sequence of plans based on the limited information about W that it has. Each such
plan will only achieve an intermediate goal. Concatenation of these plans will
achieve the desired goal. In MDLe each of these plans is called a partial plan and
is denoted by I'? = (! -- -}, &7, 17), where & is an interrupt, which when set
to 0, inhibits the execution of the partial plan and T;” is the prescribed time for
which the partial plan is to be executed. Here the notation 7! is used to denote
the jth behavior in the ith partial plan. Interrupts associated with partial plans are

referred to as level-2 interrupts.

Remark 6.2.1 As a partial plan is generated with limited information of the world,
not all the behaviors and not every atom in a behavior generated by the partial plan
may be executed at run time for the following reasons:

(i) Let us consider a behavior m; = (030104 - O, -,"-‘i-p , T,-"). Let us assume that
the atom o3 is interrupted by &5 at ﬁz_ Now as explained earlier o) will begin to
execute. But if §§ = &7, oy will not be executed and again depending on §1, 04
will begin to execute.

(ii) While executing an atom in a particular behavior, a level-1 or a level-2
interrupt might be received, and hence the remainder of the atoms in that particular
behavior will not get executed.

Given an algorithm that generates a plan I' we define a candidate measure of
performance ©(I"}) of the plan as

My =T + 1|7 T3

where 7 is a normalizing factor having the units of time. (One need not limit oneself
to such additive combinations although this is the only case used here.)

Defining a performance measure for a path planner is a difficult task as it is
largely dependent on the goal the robot seeks to achieve. Some path planners use

6. Languages, Behaviors, Hybrid Architectures, and Motion Control 211

' ¢he total time to achieve the goal as a measure of performance. In many situations
one might be interested in not only the time but also on the smoothness of the
path traversed or the number of times switching between different controls was.
necessary. For example, consider the task of parailel parking of a car. One might be

able to achieve the goal by using only open-loop controls but switching between
them at regular intervals, hence possibly reducing the time to achieve the goal but
compromising on the smoothness of the path. On the other hand if one uses a time
dependent feedback law, the same task could be achieved, possibly by moving
along a smooth trajectory at the risk of taking longer time to achieve the goal. This
indicates 2 trade-off between two competing requirements which is captured by
the performance measure (5).

We now define the optimal performance of a plan as

O (Moptimal = min{7 () + [T} (6)

Here the minimization is performed over the subset of plans generated by the
subset B of admissible behaviors. Depending on the kinetic state machine and the
choice of the planner one can now place bounds on the optimal performance and
hence compare the performance of different planners given the same language or
that of the planner given a new language. This is illustrated in the example given

below.

Example 6.2.3 Consider the problem of steering the unicycle from a given initial
location z, 1o zy. The equations of the unicycle are given in Example 6.2.2. Letus
assume that the language is based on the following atoms: o1 = (U1, . 1), o0 =
(Ua, £5, 1) where Uy, &7, U, E5 are as defined in example 1. Let @ = (!, a?)
with each &' € [-5,+5) and B € (0, c0).

Let us also assume that the planner did not have compiete information about
the world and had to generate n partial plans o achieve the goal. Each partial plan
consists of steering the unicycle from z; 10 z; (see Fig. 6.3) such that there are
1o obstacles in some small neighborhood of the line segment joining these two
locations. Let us make a further assumption that the planner uses al el —¥as
the scaling factor while generating partial plans.

From the kinematic equations of the unicycle we know that a simple partial plan
to steer a unicycle from z; = (x;, yi. 6i) 10 2; = (%}, ¥ 6;) would be:

(i) tum by (67,7, — 1),
(if) move by_a distance d;, and

(iii) finally turn by (6 — 6z,z;),
where z;z; is the vector in R? joining (x;, y;) and (x;, yihdi = iiz,-z).- ﬂ? and 8,
is the orientation of the vector w.r.t. to the x-axis.

We can rewrite this simple aigorithm as a partial plan derived from the language
using the atomic behaviors m; = o and w3 = g2,

TP, = (((Bi1/16:1], 181 D02 (1, d)o1 (Bi2/16i2), 10i2D)02), g7, 17

212 Vikram Manikonda, P.S. Krishnaprasad, and James Hendler

FIGURE 6.3. Partial plan generation.

where 6;| and 62 are the angles of the two turns as described above of the ith
partial plan. Hence the plan to steer the system from z, to zf is given by

= {rPlsz...[‘Pﬂ}_

Given a plan we now illustrate how bounds can be placed on the optimal per-
formance based con the knowledge of the kinetic state machine and the language.
Let dpax = max “Z;‘Zj ”

Tmax(T'7) < 27 +dmax + 27 < 47 + doax
and [T'?;,... < 3. Hence,
0 <O <3n+ n(4r + dmax)-

However, as we are using only open-loop controls, we know from the kinematics
of the system that given an initial state x, and a final state x; both the behaviors
(e, Bido: and (key;, Bi/ K)oy would steer the kinetic state machine from the initial
state to the final state. Hence we could replace (o;, Bi)o; by (kay, Bi/k)a;.
Observe that in the generation of the above partial plan and in the calculation
of the performance measure we restricted oo to {1, 1} (in some sense placed
bounds on the speed of the unicycle) because the planner did not have complete
information about the world. But since the language permits el e [—3, 5], we have
(47 + dmax)

0 < B(Doptimal < 5 +3n.

Having placed bounds on a plan generated by one set of behaviors we can now
compare the performance of another set of behaviors (for example, one using
periodic functions to steer the robot) against these bounds.

6. Languages, Behaviors, Hybrid Architectures, and Motion Control 213

5¢t) x(H

BEHAVICR
BANK
r || |EMERGENT
BEHAVIORS
1
i ‘ ENCODER |\‘ !
i i i
g by \ v !
G LEVEL2 /7 ™
< INTERRUPT] Ty b i :
- ; : . Il uancuacs
Lol e : N (R : .
é i) : : i)2
& :' Ty T Ty 1
= i |
= 1
£ I N : ‘ ; -/ b | scaune
) L H 3
3 | ¥ v v ! FACTORS
= el [o _ "N (aB)
9 WIERRUPY] | =] - i |
; : o ALPHABET
: — L]
[[4] GI 11
1
AN N /
I MOTOR | SYSTEM i
P R

INTERRUPT |
I

i
SENSORS

FIGURE 6.4. Hybrid controi architecture.

In the above examples we have used very simple controls in our alphabet, But
one should note that depending on the application, a wide variety of controls (open
loop and closed loop) could be included in the alphabet and some examples of such
controls can be found in [15, 16, 25, 33, 34, 36].

6.3 Hybrid Architecture

As we seck to attain higher levels of autonomy in robots, the need for hierar-
chical and distributed control schemes becomes apparent. Motivated in part by
the hierarchical structure of neuromuscular control systems {5] we present a con-
1ol architecture (see Fig. 6.4}, to generate and execute plans to achieve a given
task. The lowest level is the kinetic state machine where the sensors are used in
a low-level feedback loop. Kinetic state machines serve as abstractions between

214 Vikram Manikonda, P.S. Krishnaprasad, and James Hendler

PREPROCESSOR,

EERE

SENSCRS

FIGURE 6.5. Kinstic state machine.

discrete (atoms) inputs and continuous time control. The working of the kinetic
state machine (see Fig. 6.5) is as follows: Let us assume that an atom (U, &, TH)
is executed at time ¢ = fo. T is a timer whose output is 1 (active high) while
to <t < T; and is O {active low) if 1 = fo + T;. &(s(z)) returns an interrupt
(active low) to the system when conditions defined by either &/ (s(£)), &ib (s{t) or
E‘."’ (s()) are satisfied. Observe here that the interrupt could be of level 2,1, or 0.The
functioning of the AND gates in the kinetic state machine can be interpreted as
follows: If either the KSM receives an interrupt or ¢ > fo + T; (either T7, T‘.b, Tip)
the input to gate I1 is an active low and hence the input to the kinetic state machine
is inhibited, i.e., the current atom/behavior/partial plan (depending on the interrupt
level) is stopped and the next atomvbehavior/partial plan in the respective queue is
executed.

The planner is the highest end of the architecture where sensory information is
processed to generate goal-related trajectory information. It uses information from
its memory and the “behavior bank” to generate a partial plan to achieve the desired
goal based on its current information about the world. This partial plan is in the
form of actions or symbols. The motor system serves as an abstraction between
these symbols and behaviors encoded in MDLe. Once the behaviors have been
encoded, atoms in a behavior are executed as explained above. In case of sequential
dependence of a set of kinetic state machines on one another, the motor system
introduces “dummy atoms” (atoms with zero control input) into the respective
behaviors. The interrupt functions of these behaviors are activated by one another.

External control or “directed control” [7] is permitted at two levels. The user can
inhibit the input from the planner and introduce a valid behavior from the existing
behavior bank, or inhibit the execution of a current behavior via the “control

interrupt vector”(CIV). The control interrupt vector is an interrupt function Sfiv

appended to every behavior, ie., «S!.b = (&',.b) desired fiv. In its default state the

6. Languages, Behaviors, Hybrid Architectures, and Motion Control 215

CIV for the particular behavior s at a logical one, but can be set 10 zero by the
user when it is desired to inhibit the execution of a particular behavior.

As explained earlier, often the planner generates plans based on local sensor
information. This information may be incorrect and might result in some of the
atoms in a behavior not being executed or executed for a time less that the esti-
mated one. If a behavior successfully completes its tasks receiving only zero level
interrupts, then this behavior in its “cleaned up” version (removing unnecessary
atoms, and scaling T appropriately) is loaded into the behavior bank. Alterna-
tively a partial plan could successfully execute with interrupts of level zeroor levet
1. Then such a successful partial plan (in its cleaned up state), which is in essence
a concatenation of behaviors, is introduced into the behavior bank. Hence we see
that existing atoms and behaviors can give rise to new emergent behaviors.

The layered and distributed nature of the control becomes apparent when one
observes that once a plan has been generated, each level and even varions modules
at the same level continue to execute independently.

6.4 Application of MDLe to Path Planning with
Nonholonomic Robots

The problems of obstacle avoidance and path planning with autonomous mobile
robots have been studied in various settings [21, 22, 26,27, 35). These approaches
either assumed that the planner had to have substantive a priori information about
the location, shapes, and sizes of obstacles, or assumed that the constraints on
the robot (geometric and kinematic) were holonomic or integrable. In practice,
however, most real-world robotic systerns have little a priori information about the
shapes and sizes of the obstacles and in addition include kinematic constraints that
are nonholonomic. A few examples of nonholonomic systems are a front wheel
drive car, dextrous manipulation or assembly with robotic hands, and attitude
control of a satellite. As traditional path planners assume arbitrary motion they
cannot be applied to nonholonomic robots as they result in nonfeasible trajeciories,
i.e., trajectories that do not satisfy the constraints on the configuration variables.

More recently, researchers have been examining nonholonomic path planning
in the presence of obstacles [8, 18, 24, 29]. However, while most of these planners
provide some excelient results they are quite rigid in the choice of control laws
used fo steer the robots and often do not exploit the control laws available in
control literature, for example, {15, 16, 33, 36]. They also assume near compiete
a priori information about the world and only account for small changes in the
environment,

MDLe is particularly well suited to the demands of nonholonomic motion-
planning with limited range sensors. As nonholonomic tobot models impose
limitations on stabilizability via smooth feedback [9], the ability to piece together
open-loop and closed-loop trajectories becomes essential. MDLe enables one to-
deseribe such piecing together in a systematic manner. As an example of the

216 Vikram Manikonda, P.S. Krishnaprasad, and James Hendler

strength of this language, we show that it can be used to support a reactive plan-
ner for nonholonomic motion planning in the presence of obstacles, using limited
range sensors for obstacle detection. In addition, the system assumes no a priori
information on the location and shapes of the dbstacles.

In the following section we reinterpret existing results in the literature on non-
holonomic robots, and answer questions related t0 the existenrce and choice of
an alphabet % (respectively X,) which can be used to generate behaviors and
hence plans to achieve a required goal. We also describe {Section 6.5.3) how we
can update world models and provide examples of the system’s performance. For
further details on nonholonomic motion planning we refer the reader to {17] and
references therein.

6.4.1 Nonholonomic Constraints

In addition to being subject to geometric constraints many robotic systems are sub-
ject to velocity constraints. These velocity constraints are represented by relations
between generalized coordinates and their velocities, and are written in mairix
form as

Al =0 @

where ¢ € R” determines the generalized coordinates, § are the generalized veloc-
ities, and A(g) € Rixn represents a set of k velocity constraints. We also assume
that A{g) has full row rank. Since a kinematic constraint restricts the allowable ve-
locities and not necessarily the configuration, it is not always possible to represemt
it as an algebraic constraint on the configuration space. A kinematic constraint is
said to be integrable if there exists a vector-valued function s : @ — [R* such that

AQg=0 = —4=0 ®

An integrable kinematic constraint is hence equivalent to a holonomic constraint.

Kinematic constraints that are not integrable are said to be norholonomic.
The constraint (7) defines a (27 ~ k)-dimensional smooth manifold M =
{(g,8)A(g)g = 0}. These kinematic constraints generate a set of constraint forces
so as to ensure that the system does not move in the direction of the rows of the
constraint matrix {see Fig. 6.6). In mechanical systems such constraints are often
those of rolling without slipping, conservation of angular momentum, etc.

If the controls u(r) € R™ satisfy n — &k < m < n then the kinematics are
sufficient to model the systern and (7) can be written in the form of a drift-free
control system

m
i= Y bi(ou;)

i=i
with state x (¢} and control u(7), and each b; is a vector field. Often such drift-free
nonholonomic systems are controllable {cf. [32]).

. 6. Languages, Behaviors, Hybrid Architectures, and Motion Control 217

-
-
o

n-ma Feasible Trajectory
—— Nonfeasibie Tratectory

FIGURE 6.6. Nonfeasible trajectories due to nonholonomic constraints.

Proposition 6.4.1 Given an obstacle-free environment and a kinetic state machine
that is governed by the differential equation

m
=y bi(xu; x e R ueR" (10)

i=1

such that the control Lie algebra (i.e., the vector space spanned at any point by all
the Lie brackets of the vector fields ;) has rank n, then there exists an alphabet
T (respectively I.) which can be used to generate behaviors (and hence plans) to
steer the system from a given initial state x, 0 a final state xy.

Proor. From Chow’s {19} theorem we know that if the control Lie algebra has
rank n then the system is controllable. This implies that there exist piecewise
constant controls u : [0, T] — R™, T > 0, that steer the system from any initial
state x, (0) to any final state x7 (T).

A simple alphabet that can be used to generate behaviors consists of m triples
of the form (U3, 1, 1), ..., (Um, 1, D e € R, § € RY where

Uy =(1,0,0,0,...,0/
Us = (0,1,0,0,...,0)

: O
Un =(0,0,0,...,0,1)’

While writing down the equations of motion it is sufficient to consider the
evolution of the state x € C (the configuration space of the robot). For path planning
and obstacle avoidance one needs to be concerned with the “material points of
the robot.” location, and calibration of sensors. In our planner we identify the
material points of the robot with a closed subset, denoted by B', of R3. Hence
B - = F:x v B(x),where F is the space of all closed connected
(simply connected) subsets of R3. Further we define B] : C — JF such that at
any given time ¢ = ¢/ (i) B/ (x(t")y C B[(x(¢")) and (ii) d(d B, dB"} = k, where
d(X,V) = mingex, ey ld(x, ¥} and 3 B" denotes the boundary of the set B'.
Let’s assume that the robot is equipped with limited-range sensors that can detect

218 Vikram Manikonda, P.S. Krishnaprasad, and James Hendler

an obstacle ina Bg neighborhood. of x. Define an interrupt &, as follows.

0, VxeB, e€<p,

1, Yxe BL\B. (an

Epelx) = {
Proposition 6.4.2 Given akinetic state machine govemed by the differential equa-
tion (9) and a behavior with an asscciated interrupt § then the same hehaviour
with an interrupt of the form

E;b = Eb A snc
where &, is as defined by {11) will result in a collision-free path.

Since the robot is equipped with limited-range sensors in our planner the task
of path planning is reduced to steering in obstacle-free neighborhoods denoted by
B’ .. Using a potential function approach (see Section 6.5.1 for details) a point
xf € E)B[J 4 Is identified to which the planner steers the robot. As the 51ze of

decreases due to nonholonomic constraints finding a control s.t. x{t}-€ B, f ”
cannot always be guaranteed. But for a certain class of robots that are locally
locally controllable (LLCY we can guarantee this.

Proposition 6.4.3 If the system defend by (9) is LLC then there exists & behavior
(-, €%, T?) such that x (1) € B, V¢ < [0, T"L.

Observe that by a choice of £ as defined in11) collision avoidance is guaranteed
even if material points of the robot leave Bj. ;.

6.5 PNMR: Path Planner for Nonholonomic Mobile Robots

The task of the planner is to use the limited-range sensor information, to gener-
ate partial plans that result in collision-free feasible trajectories. Planning is done
at two levels—global and local. For local planning, collision-free (non)feasible
paths are generated using potential functions assuming that the robot is holo-
nomic. A partial plan (feasible path) is then generated that obeys the constraints
in the configuration variables. As feasible trajectories are only approximations to
the trajectories generated using potential functions, collision with obstacles could
occur while tracing them, While the robot is in motion, collisions are avoided by
using the sensor information to trigger interrupts as described previously. The task
of the path planning is outlined as follows {see Fig. 6.7):

1. Interpret local sensor information to generate a “control point” and an obstacle-
free neighborhood containing this “control point” to which the robot is to be
steered.

5The system (9) is said to be locally locally controllable at xo if given any € > 0 there
exists a8 > 0 such that all points in the §-neighborhood of xp can be linked by a trajectory
of (9) which does not leave the ¢-neighborhood

LTl

A

6. Languages, Behaviors, Hybrid Architectures, and Motion Control 219

[Exeouts Pian_J+—| Generate Plan_|+—|__World Update _|+—{ Read sensars |

[Evoioiion of kst |+]__Updatepian | [Locai word [Cleanyp | [Worldtogel |

FIGURE 6.7. Navigation task decomposition.

2. From the given alphabet select atoms (U, £, T) that could be used to steer the
robot (in general, depending on the richness of the alphabet (), there could be
more than one behavior to steer the robot to the control point).

3. Calculate the scaling factor o (crucial, as it defermines the speed of the robot).
Having calculated a, calculate or approximate g, the duration for which each
atom is to be executed.

4. Generate an optimal partial plan, by minimizing the performance measure (6).
The minimization is performed over the admissible behaviors.

5. Execute the partial plan and update runtime information regarding actual time
of execution of behaviors in the partial plan, sensor information, etc.

6. Generate an optimal plan given partial plans and an updated world model.

At a global level, heuristics, along with the world map generated while the robot
is en route to the goal, are used 1o solve the problem of cycles. One should note
here that the planner could be used with most nonholonomic robots, by selecting
the corresponding alphabet and associating rules with the selection of atoms. In
our simulations we have assumed that the robot is modeled along the lines of a
unicycle, See [30] for details on the implementation of the planner.

6.5.] Planning in the Obstacle-Free Disk

To find the best direction of travel in the obstacle-free disk we use the approach of
potential functions. As in the earlier work on path planning with potential functions,
the idea behind our construction is based on electrostatic fields. Charges of the same
sign repel and charges of the opposite sign attract in accordance with Coulomb’s
law. Hence we assign a positive charge distribution to the obstacles and the mobile
robot and a negative charge distribution to the goal. The idea is to construct a
vector fieid which will give the best direction of travel based on the location of the
obstacles and the goal.

The robot is approximated to a point robot and as sensors can detect only points
on the boundaries of the obstacles that lie in their line of sight, we treat obstacles as
acollection of point charges and assign charges to them depending on which sensor
detects thern. The intersection of the resultant gradient field with the circumference
of the obstacle-free disks gives the desired location to which robot is to be steered.
(One should observe here that unlike earlier approaches the gradient field is not
directly used to steer the robot. As integral curves of the resultant gradient field
may not result in feasible trajectories we use the resultant gradient field only to

Bl M bd bed el R el W R L el

220 Vikram Manikonda, P.S. Krishnaprasad, and James Hendler

determine the scaling factors and xs on the circumference of the obstacle-free
disk.)

Once the initial and desired final state of the robot is known, control inputs are
chosen from those available in the language to generate feasible trajectories to
steer the robot from the initial location to the final desired location. If more than
one such control achieves the task then the performance measure can be used to
select the optimum one.

As we are using a kinematic model, of the robot an underlying assumption is
that the robot is moving at low velocities and we can bring the robot to a halt
simply by turning off the controls. To determine scaling factors, which are directly
related to the velocities of the inputs to the equations governing the motion of the
robot, we use the sum total of both the atiractive and repulsive forces to determine
the bounds on the velocities and hence the bounds on the scaling factors. A simple
example of such a function is given by

1

Hmax: TTATIIAI
g(far fr)= 1 I fa {

- 0 =T = Um
AR A2

where f, and f, are the net attractive and repulsive forces acting on the robot.
Observe that when the robot is close to either the obstacle, the goal or both, it
moves with a lower velocity, thus making the kinematic model more realistic.

By intelligently choosing weights on the charges (see [28] for more details) we
can ensure that the robot either avoids the obstacle or gets close enough to an
obstacle® such that B, rd = B!, in which case it traces the boundaries of obstacles
to a point where it finds an edge or is heading in the direction of the goal.

Umax 1

axX

Remark 6.5.1 It is important to mention here that as we are making no assamp-
tions on the location, sizes, or shapes of the obstacles. Guaranteeing the existence
of a path is very difficuit, though empirical results have shown that if a path exisis
the robot has more often than not found it. More importance here is stressed on
the ability of the planner to integrate real-time sensor information with control-
theory-based approaches to steer nonholonomic systems in a systematic way. As
mentioned earlier, nonholonomic robots impose limitations on stabilizability via
smooth feedback and the planner developed under the framework of the language
provides an elegant way of piecing together various control strategies.

_6.5.2 Tracing Boundaries

Planning in B,, is a closed-loop planning strategy which essentially results ina

trace behavior that traces the boundaries of the obstacles. Given the limited sensor
and world information it is probable that the direction of trace may have been

5{n the implementation of the planner we identify a critical radius in which the robot
changes its control strategy

a:

I

j= T

o b

6. Langﬁages, Behaviors, Hybrid Architectures, and Motion Control 221

' wreng. Hence we use a heuristic function f(x) = D(Xrobot, Xinit), the Euclidean

distance between X oot and Xini; (the pointat which the trace behavior was started)
as an estimate of how far the robot has strayed from the goal. The robot traces the
boundary as long as f < f; where f; is some permitted distance from where the
trace behavior was started. If f > f; then we retrace path and trace the boundary
of the obstacle in the opposite direction. If terminal conditions for the trace are not

met, we set f; = afs, o > 1, and repeat.

Remark 6.5.2 Retracing a path under this framewerle is a rather simple task.
Observing that the system is a drift-free system, retracing involves executing the
past n partiat plans in a reverse order with (—«) scaling factor.

Fig. 6.8 shows some paths generated by the planner for a robot modeled along
the lines of a unicycle.7 It is important to note that while the plan is being executed
the sensors are being continuously scanned and are present in 4 low-level feedback
loop, thus preventing any collisions with obstacles.

6.5.3 World Model Update

Once the robot has explored the environment using limited-range sensors, it is
natural to expect the robot to generate plans of a better performance if it has to
repeat the same task or move 10 goal that lie in the explore regions. We use a
“learning algorithm” that improves the performance of a plan to bring it closer to
optimal.

As described above, the plan to steer a robot consists of a sequence of partial
plans, where each partial plan steers the robot in some obstacle-free disk of radius
Bgf - In the rest of this section let us denote each of the obstacle-free disks which
were used to generate the ith partial plan as B and the ith partial plan as I";" .
Further let us assume that 7 such partial plans were generated. Once the plan has
been generated the planner uses following:

G).If B; C Bj,i = 1,...,n,j=1,...,n (e, Bi is contained in B;) then
obviously B; contains redundant information. Thus if B; C B;| the partial plan
l"{’ . that steers the robot from C; to C; 4.1, where C; is the center of the obstacle-free
disk, and partial plan Ff 1 that steers the robot form C; 4 to C;17 can be replaced
by a partial plan ff that steers the robot from C; to Ci42. Since B; C Biy1itis
obvious that &(T7) < &I/ TL,)

(ii). Observe that since C;.) lies on the boundary of B;, we are guaranteed
the existence of a trivial nonfeasible trajectory (the straight line joining C; with
Ci42) that lies entirely in B; |) Biv1, ie., the obstacle-free area enclosed by these

"It should be pointed out here that the obstacle-free disks generated by the planner
violate the exact definition given above, but this is because in the simulator we have used
only sensors in the “front™ of the robot to generale obstacle-free disks. For now, those
obstacles that are not detected by the sensors are treated as being in the blind spots of the

robot.

222 Vikram Manikonda, P.S. Krishnaprasad, and James Hendler

- Obstacles

O QObstacle-free disks

FIGURE 6.8. Paths generated by the planner.

two intersecting obstacle-free disks. Hence if there exists a partial plan Ff that
generates a feasible trajectory that can track this nonfeasible trajectory and lie
entirely in B; |_j B; +1 such that ©(T) < ©(I'/'Tf, |} we can replace rfrf by
T7
r(iii). After the execution of (i) and (i) we now have partial plans that steer the
robot from C; to Citj, j € {2,...,n} such that the trajectory lies entirely in
U;ﬂ B;. The planner now explores the possibility of finding (non)feasible trajec-
tories from C; to Gy j+k, j € 2,...1, k = 1,...,nsuch that these trajectories lie
entirely in Uf.“ + B; and the performance of the plan that generates this trajectory
is better than the earlier one.
Fig. 6.9 shows paths generated by the planner after it has gained partial knowl-
edge of the world it has explored in its first attempt toreach the goal. The bold solid
lines denote the new trajectories (partial plans) generated after partial knowledge

QRRL ¢ T e

6. Languages, Behaviors, Hybrid Architectures, and Motion Control 223

AL
NCTID)

O Obstacle free disk
Path generated after robot has partial
knowledge of its environment.

FIGURE 6.9. Paths generated by the planner.

of the world has been gained. It clearly shows an improvement in the performance
of the planner as the length of the plan is nearty a third of the plan generated in the

first attempt.

Remark 6.5.3 (i). Generating ’Eians of better performance does not necessarily
imply that |T7] < |T'7| where T/ is the new plan, but rather could simply imply
the choice of better scaling factors a, § such that TP <TTH.

(ii). One need not restrict the generation on nonfeasible trajectories to straight
line segments, but could instead use arc or even curves that best fit the centers of

these obstacle-free disks.

6.6 Conclusions

This discussion is an attempt fo bring together the perspectives on motion con-
trol as developed through the research programs in artificial intelligence, control
theory, and the behavioral sciences. Here we provide a language, a framework,

224 Vikram Manikonda, P.S. Krishnaprasad, and James Hendler

and a hybrid architecture to integrate features of reactive planning methods with
control-theoretic approaches to motion control. The hybrid language permits com-
position of plans from sets of behaviors, The issue of compositionality is of active
interest (see, for instance, the article of Bienenstock and Geman in [6]), and the
approach taken here may have some appeal in this regard. At the same time the
incorporation of differential equations in the language makes it possible to formal-
ize, compare, and generate behaviors that improve over time, construct maps, ete,
It is clear that in the arena of motion-planning of systems with complex dynamics,
under-actuated controls, and limited-range sensors, it is heipful to be able to switch
between behaviors that rely on the direct coupling of sensory information and ac-
tuators, and steering using control-theoretic approaches. Our approach shows that
these two can be smoothly integrated, at least for problems of nonholonomic robot
path planning. Future work includes extending the language to continue formal-
ization of behaviors, including multiple kinetic state machines in the language, and
implementation of the planner to control a physical, as opposed to a simulated,
robot.

Acknowledgments: This research was supported in part by grants from the Na-
tional Science Foundation’s Engineering Research Centers Program NSFD CDR
8803012, by the Army Research Office under Smart Structures URI Contract
No. DAAL03-92-G0121, and under the ODDR&E MURI97 Program Grant No.
DAAG55-97-1-0114 to the Center for Dynamics and Control of Smart Struc-
tures (through Harvard University), by the Office of Naval Research under
ONR (NOO0Q14-J-91-1451), by the Advanced Research Projects Agency under
(NOQO14-94-1090, DAST-95-C003, F30602-93-C-0039), by the Army Research
Lab (DAAHO049610297) and by the National Science Foundation under Grant
EEC 94-02384, and under the Learning and Intelligent Systems Initiative Grant
CMS9720334.

REFERENCES

[1} M.A. Arbib. Schema theory. In Encyclopedia of Artificial Intetligence, pages 1427-
1443, Wiley-Interscience, New York, 1992,

[2] M.A. Arbib, Schema-theoretic models of arm, hand, and eye movements. In
P. Rudomin, M.A. Arbib, F. Cervantes-Perez, and R. Romo, editors, Neuroscience:
FromNeural Networks to Artificial Intelligence, pages 43-60. Springer-Verlag, New
York, 1993,

[3] C.R. Arkin. Motor schema-based mobile robot navigation. The Int. Journal of
Robotics Research, 8(4):92-112, 1988.

[4] C.R. Arkin. Behaviour-based robot navigation for extended domains. Adaptive
Behaviour, 1(2):201-225, 1992. '

[5] N. Bernstein, The Coordination and Regulation of Movement. Pergamon Press,
Oxford, 1967.

[6] E. Bienestock and S. Geman. Compositionality in neural systems. In M.A. Arhib,

editor, The Handbook of Brain Theory and Neural Networks, pages 223-226. MIT

Press, Cambridge, MA, 1995,

0. Languages, Behaviors, Hybrid Architectures, and Motion Control 225

{71 B.Blumberg and T. Galyean. Muiti-level direction of autonomous creatures for real-
time virtual envorinments. In Computer Graphics Proceedings, SIGGRAPH-95,
pages 47-54, 1995.

{8] . Barraquand and J.C. Latombe: Robot motion planning: A distributed represen-
tation approach. Technical Report STAN-CS-88-1257, Stanford University, May
1989, .

[9]1 R. W. Brockeit. Asympiotic stability and feedback stabilization. In R.W. Brockett,
R.S. Millman, and H.J. Sussmann, editors, Differential Geometric Control Theory,
pages 181-191. Birkhauser, Boston, 1983.

[10] R.W. Brockett. Robotic manipulators and the product of exponential formula. InP.A.
Fuhrmann, editor, Mathematical Theory of Networks and Systems, pages 120-129.
Springer-Verlag, New York, 1984,

{111 R.A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(1):14-23, 1936.

[12] R.W. Brockett. On the computer control of movement. In Proc. of the 1988 IEEE
Conference on Robotics and Automation, pages 534-540. IEEE, New York, 1988.

[13] R.W. Brockeit. Formal languages for motion description and map making. In
Robotics, pages 181-193. American Mathematical Society, Providence, RI, 1990.

[14] R. W. Brockett. Hybrid models for motion control. In H. Trentelman and J.C.
Willems, editors, Perspectives in Control, pages 29-51. Birkhauser, Boston, 1993,

[15] 3.-M. Coron. Global asymptotic stabilization for controllable systems. Mathematics
of Control, Signals and Systems, 5(3), 1992.

[16] C.Canudasde Witand O.J. Sordalen. Exponential stabilization of mobile robots with
nonholonomic constraints. JEEE Transactions on Automatic Control, 37(11):1791-
1757, November 1992,

[17] C. Fernandes, L. Gurvits, and Z.X. Li. Foundations of nonholonomic motion plan-
ning. In Z. X. Li and I. E. Canny, editors, Nonholonomic Motion Planning, Kluwer,
1993,

[18} H. Hu and M. Brady. A Bayesian approach to real-time obstacle avoidance for a
mobile robot. Autenomous Robots, 1(1):69-92, 1995.

[19] Robert Hermann. Accessibility problems for path systems. In Differential Geomn-
etry and the Calculus of Variations, Chapter 18, pages 241-257. Math Sci Press,
Brookline, MA, 1968. 2nd Edition.

[20} L Horswill. Polly: A vision-based artificial agent. Proc. of the Eleventh Conference
on Artificial Intelligence, MIT Press, Cambridge, MA, 1993,

[21] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. The
Int. Journal of Robotics Research, 5(1):90-99, Spring 1986.

[22] D.E. Koditschek. Exact robot navigation by means of potential functions: Some
topological considerations. In Proc. of the IEEE Int. Conference on Robotics and

Automation, pages 1-6. IEEE, New York, 1987.

[23] D.M. Lyons and M.A. Arbib. A formal model of computation for sensory-based
robotics. [EEE Tran. on Robotics and Automation, 5(3):280—-293, June 1989,

[24} 1.P. Laumond. Nonholonomic motion planning versus controliability via the
multibody car system example. Technical Report STAN-CS-90-1345, Stanford
University, December 1990.

{25] N.E. Leonard and P.S. Krishnaprasad. Averaging for attitude control and motion

planning. In Proc. of the 32nd IEEE Conference on Decision and Control, pages

3098-3104. IEEE, New York, 1993,

Bad e il

226

Vikram Manikonda, P.S. Krishnaprasad, and James Hendler

126] T. Lozano-Perez. Spatial planning: A configuration space approach. Al memo 605,

[27]

[28]

[29]

(301

[31]

(32]

{33]

34

(35]

(36]

[37]

MIT Artificial Intelligence Laboratory, Cambridge, MA, 1980.

V.J. Lumelsky. Algorithmic and complexity issues of robot motion in an uncertain

environment. Journal of Complexity, 3:146-182, 1987.

Vikram Manikonda. A hybrid control strategy for path planning and obstacle avoid.

ance with nonholonomic robots. Master’s thesis, University of Maryland, College

Park, MD, 1994,

B. Mirtich and J.F. Canny. Using skeletons for nonholonomic path planniing among

obstacles. In Proc. of the [nt. Conference on Robotics and Automation, pages 2533-

2540. IEEE, New York, 1992.

V. Manikonda, J. Hendler, and P.S. Krishnaprasad. Tormalizing behavior-based plan-
ning for nonholonomic robots. In Proc. of the 14th Int. Joint Conference on Artificial

Intelligence, pages 142-149, Morgan Kaufmann, San Mateo, CA, 1995

V. Manikonda, P.S. Krishnaprasad, and J. Hendler. A motion description language
and hybrid architecure for motion planning with nonholonomic robots. In Proc. of
the IEEE Int. Conference on Robotics and Automation. IEEE, New York, 1995.
R.M. Murray, Z. Li, and S.5. Sastry. A Mathematicat-introduction to Robotic
Manipulation. CRC Press, Boca Raton, FL, 1994,

R.M. Murray and 3.8, Sastry. Steering nonholonomic systems using sinusoids. In
Proc. of the 29th IEEE Conference on ecision and Control, pages 2097-2101. IEEE,
New York, 1990.

I1.B. Pomet. Explicit design of time-varying stabilizing control laws for a class of
controllable systems without drift. Systems and Control letters, 18:147-158, 1992,
R. Shahidi, M.A. Shayman, and P.S. Krishnaprasad. Mobile robot navigaiion us-
ing potential functions. In Proc. of the IEEE Int. Conference on Robotics and
Automation, pages 2047-2053. IEEE, New York, 1991.

H.J. Sussmann. Local controllability and motion planning for some classes of sys-
tems without drift. In Proc. of the 30th Conference on Decision and Control, pages
1110-1114. IEEE, New York, 1991.

1.C. Willems. Paradigms and puzzles in the theory of dynamical systems. [EEE

Transactions on Automatic Cantrol, 36:259-294, 1991

