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ABSTRACT

Independent Component Analysis (ICA) is a
powerful statistical signal analysis tool, which
can separate signals from mixtures without any
prior knowledge. However, the performance
of many current ICA algorithms degrades seri-
ously in the presence of strong noise. Inspired
by the psychoacoustic discovery that humans
perceive and process the acoustic signals in dif-
ferent frequency bands independently, we pro-
pose a new algorithm that integrates ICA with
time-frequency analysis to separate mixed sig-
nals. Wavelet decomposition and best basis se-
lection in wavelet/DCT packet can be incorpo-
rated into this algorithm. The new algorithm is
able to accomplish the separation task success-
fully in the presence of strong noise. Experi-
mental results on acoustic signals demonstrate
its effectiveness.

1. INTRODUCTION

Independent Component Analysis (ICA) can
recover independent sources given only sensor
observations that are unknown linear mixtures
of the unobserved source signals and noise. In
contrast to Principal Component Analysis that
decorrelates signals based on covariance ma-
trix, ICA uses higher order statistics of the sig-
nals to find the independent components. ICA
has many applications in speech enhancement
and recognition, telecommunication, biomed-
ical signal analysis, and image denoising and
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recognition [2] [4] [6] [14]{15] [10]. However, the
performance of many current ICA algorithms
degrades seriously in the presence of strong
noise. Inspired by the psychoacoustic discover-
ies connecting auditory perception and wavelet
theory, a new ICA algorithm, the subband-
based ICA algorithm, is proposed to separate
independent signals. Experimental results fully
demonstrate its robustness to noise.

2. SYSTEM MODEL AND
LEARNING RULE

While some nonlinear ICA algorithms have been
proposed[7][11], most of the contributions to
the ICA literature are based on the linear in-
put mixture model, which is defined as:

x(t) = As(t) + b(1),

where s(t) = [s1(t),s2(¢),-..,8,]7 is an un-
known source signal vector at discrete time t,
x(t) = [21(t), z2(t), ..., zn(t)]7 is the observa-
tion signal vector, A is a full rank n X n mixing
matrix, and b(t) is noise. The components of
the vector s(t), i.e., s1(t), s2(t),...,s,(t) come
from n independent sources. Unlike factor anal-
ysis addressed by EM algorithmn[5}, which as-
sumes the b(t) is normally distributed with a
diagonal covariance matrix and s(t) is also nor-
mally distributed, ICA algorithms are derived
on the assumption of noise free measurements.
In practice, many ICA algorithms do not work
well in noisy mixture.



Given the mixture model, the aim of ICA
is to recover the original source signal s(¢). To
this end, the following simple separation model
is used, corresponding to the above linear mix-
ture model:

y(t) = Wx(1),

where y(t) = (y1(t),y2(t), ..., yn(t)]” is an es-
timate of s(t) and W is the unmixing matrix, .
i.e., an estimate of the inverse of A.

To obtain the learning rule for the demixing
matrix W, we use natural gradient{1] to mini-
mize the Kullback-Leibler divergence between
the source signal vector s and its estimate y,
i.e.,

dy

DUy Il £ = [ fy(otog f:“’

fy(8)

where f, and fs are the probability density
functions (pdfs) of y and s. The pdfs are ap-
proximated by the truncation of the Gram-
Charlier expansion. Then the following learn-
ing rule (and its nonholonomic version [3]) is
obtained:

W(n+1) = W(n)+n(n)[I-gly(n))y" (”)]“(’(1)1)7
1

Where 1 is the identity matrix, n(n) is the

learning rate, and the g(y) = (g(v1), -, 9(yn))T
is a nonlinear function[22],

1, 2, 16,4 2 4
2z +3z +2z +15z
12 12
- 13—213 + 128215 — 5—-—z17.

g9(2)
(2)

3. THE SUBBAND-BASED ICA

Many psychoacoustic experiments have shown
that humans perceive and process the acous-
tic signals on different frequency bands inde-
pendently [19]{20]. Inspired by these discover-
ies, we propose a new algorithm, namely, the
subband-based ICA, that integrates ICA with
time-frequency analysis to separate mixed sig-
nals. The subband-based ICA and the early
auditory models are compared in figure 1. The

200

new algorithm can accomplish the separation
task successfully in the presence of strong noise.

The outline of the algorithm is described in
the following:

1. First, each component, z;(t), where 1 <
j < m, of the observation x(t) is decom-
posed into subband signals.

Though digital filter banks have been built

to mimic the subbanding function of cochlea[21]
for the simplicity and the linearity re-
quired by ICA the orthogonal Daubechies
wavelet packet decomposition[23] is used
instead of the cochlear filter bank as in

the following:

k
Z;

N

©)

where 27" = (z;(n),7;(n~1),- -, z;(n—
N+1)) and el = (ex(1),ex(2), -, ex(N))
is a vector of coefficients determined by
the kP band Daubechies wavelet filter
and N is a window size.

(n) =<z e} >,

2. The averaged powers of the decomposed
signals in every band are computed and
sorted by a fast sorting algorithm, for ex-
ample, heap sorting.

3. Then the learning rule (1) is applied only
on some of the bands which have the strongest
powers, for example, in the top one fourth
of all the signal bands, for the following
reasons:

e If noise is broad-band, the signal to
noise ratio (SNR) will be larger on
those bands which have strongest power.

o If noise is limited to some narrow
bands, then many signal bands will
be noiseless, which means good sep-
aration results can be obtained in
those noiseless bands.

We denote the demixing matrix obtained

on the kt* selected band as:

wi

Wk - .
W
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Figure 1: The Subband-based ICA and Early Auditory Models

where the row W¥,1 < j < n is used to
get to the j!* component, y;-"(t), of the

estimated source signal y(¢) on the kt*
band.

. Noise is reduced using a soft thresholding
algorithm[24] applied to the subband de-
composed signals.

. To recover the estimated source signal
y(t), we have two methods:

a First recover the overall unmixing
matrix W from the unmixing matri-
ces associated to different subbands,
and then recover y(t) from Wx(t).
Competitive learning[22] is applied
to cluster the rows of the unmixing
matrices obtained on different sub-
bands. The overall unmixing ma-
trix W consists of n clustered rows.

Recover y(t) directly from the
y5(t),1 < j < n by wavelet packet
reconstruction algorithm.

Depending on the practical situation, we
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can choose (a) or (b) to get the better
result.

ADAPTIVE BASIS SELECTION
IN WAVELET/DCT PACKET

The subband-based ICA enhances the separa-
tion capability by decomposition of the signal
into different frequency bands. But the prob-
lem of designing the filter bank remains. For
example, it will be good if we do not split the
signal into two bands at the frequency where
the energy of the signal concentrates because
otherwise we might segment one or several con-
tinuous signal streams in time-frequency plane
into two different bands, which could affect the
performance of ICA in each band. So, depend-
ing on different signal properties, we can design
different filterbank to improve the performance
of the subband-based ICA.

To address this problem, we incorporate the
adaptive basis selection algorithm, proposed by
Coifman, et al., into the subbband-based ICA
algorithm.

Similar to the procedure we described in



section 3, we have the following steps:

1. First we choose Shannon entropy as the
cost function and apply adaptive basis
selection algorithm in Wavelet or DCT
packet (See the details in [25]) on the
summation of the different mixed signals
to get the best bases.

2. Then we project each mixed signal onto
the best bases.

3. The learning rule (1) is applied only on
some of the projected signals which have
the strongest normalized power. The power
is normalized in frequency domain. Noise
is reduced by thresholding method if nec-
essary.

4. Competitive learning is used to group the
rows of the demixing matrices obtained
on different bases and get the overall demix-
ing matrix W.

Best basis selection algorithm actually ac-
complishes the task of adaptively selecting fil-
ter bank based on the properties of the signals,
which makes the subband-based ICA more ro-
bust against noise.

5. EXPERIMENTAL RESULTS

Before describing our experimental results, we
introduce the performance index E, which is
defined as in [1]:

n n

_ Ipi] -
S ) D TITG 3l) gt e

i=1 j=1 Jj=1 i=1

|pz]|
mazk|pej|

where P = {p;;} = WA. The smaller the index
is, the better P approximates a permutation
matrix which has only one nonzero element in
each row and each column, and the better the
separation is.

First, we separated two mixtures of two
speech signals, randomly selected from TIMIT
speech library and added strong white noise.
These speech signals were sampled at 8K Hz.
The average SNR of the mixtures was 0.51 dB.
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From the mixtures it was hard to understand
any word of the speech sentences. Then the
subband-based ICA was applied to separate
the mixture signals. The performance index
E of this separation was 0.08 and the SNR in-
creased to 5.64 dB. The separated speech sig-
nals were understandable though still noisy.

Second, we tested our algorithm on two mix-
tures of strong white noise and the test data
used in ICA 1999 conference, i.e., street.wav
and beet.wav([27]. The power of the noise was
the same as the average mixed signal power,
i.e., the average SNR is 0.0 dB. Despite the low
SNR, the subband-based ICA based on adap-
tive basis selection is successful in separation.
For the purposes of comparison, we also tested
the Fast ICA algorithm {12] and the Extended
Infomax algorithm [6] on those noisy mixtures.
The codes for Fast ICA and the Extended Info-
max were downloaded from [13] and [9} repec-
tively. For the Extended Infomax we modified
the learning rate trying to get the best perfor-
mance for our test data. The separation results
are shown in table 1

Approaches Index E Average SNR of
the separated signals
Subband based ICA 0.051 4.31 dB
Fast ICA 0.124 -1.63 dB
Extended Infomax 0.118 -1.38 dB

Table 1: The Simulation Results of different
ICA algorithms. The average SNR of the
mixed signal is 0.0 dB

From the above table, we can see that the
subband-based ICA is robust against noise. The
waveforms in the separation of the subband-
based ICA are shown in figure 2.

6. CONCLUSION

Inspired our understanding of the subbanding
strategies used in early auditory system, we
present the the subband-based ICA, a new pow-
erful algorithm to separate mixed signals. First,
by performing parallel separation on several
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