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In this paper, we investigate a decomposition of the space of reduced rational
functions of fixed degree into continued fraction cells. We give a variety of
combinatorial formulas pertaining to this decomposition and investigate the effect
of certain scalings on the decomposition. We conjecture that the continued
fraction decomposition is indeed a cell decomposition in the topological sense.
We provide evidence in low dimensions for this to be true.

1. Continued-fraction expansion

LET us denote by g(s) = q(s)/p(s), a strictly proper, rational function of degree n
with real coefficients, where gq(s)=g,_,s"'+:---+g, and p(s)=s"+
Pn_18"'+---. Thus q(s) and p(s) are coprime. We apply the Euclidean
algorithm in the following manner:

P"—'alvi—pz, deg p, <deggq,

1

q= o:zﬁ—z— Ps, deg p, <deg p,, 1.1
2
=g Pr -
Pr—1= a,;, degp, =0, p,#0.

r

The polynomials a; are required to be monic and thus the scale factors v, are
uniquely determined. Also the coprimeness of the pair (g, p) implies that
deg p, =0 with p, #0. The monic polynomials a; are called the atoms of (g, p).
Let us define the auxiliary coefficients:

Bo=v1, Bi=vv (=1,...,r-1).
It is well known that the process (1.1) yields a continued fraction expansion of
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q/p:
Bo
B '

az"

(1.2)
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We refer the reader to [13] and [8] for the relationship between the continued-
fraction expansion (1.2) and the partial-realization problem. A primary result of
interest to us is a classical theorem of Frobenius [5] that relates the Cauchy index
of g =q/p to the expansion (1.2). Recall that the Cauchy index of g is the
signature o(H,) of the n X n Hankel matrix associated to g [7]. In our notation we
can state the classical result as follows.

THEOREM (Frobenius)

o(H,) = Z (sgn fl ﬁ;) 1+ (_21) - 1.3)
(=1 j=0

For a modern proof of Frobenius’ theorem using Bezoutian forms see [6].

Remark 1.1. The fraction N,/D, obtained after clearing all fractions in (1.2) is
always irreducible. Thus, iff ¢ and p are coprime,

>, dega;=n=degp. (1.4)
fm=1]
Remark 1.2. The generic case corresponds to deg a; =1 and hence the maximum
value of r =n.

2. Types and cells

For a continued fraction of degree n, we have an associated ordered r-tuple of
integers (y,, 43, ..., &,) where u,=deg a; and Y., u, =n. Further, for fixed
(p1, . . ., @), it is not possible to deform continuously the real coefficients f; in
order to change their signs, without causing a drop in the degree of the continued
fraction. This suggests the following definition.

DEeFINTION 2.1 By the type of a continued fraction (1.2) we mean a pair (g, 8)
where u = (uy, fa, . - ., 4,) is the r-multi-index of degrees of the atoms «; and
6=(6,,...,0,)is astring of +1’s and —1’s obtained by setting §, =sgn B,_,.

For the multi-index g =(y,,..., u,) we adopt the convention that |u|=
Yi=1 u;. For the parity string 6 =(6,,..., 6,) we adopt the convention that
||8]l = =length of the string. For fixed n, the only admissible types are pairs
(u, 8) such that g is an r-multi-index where || =n and r = |||

Now, consider the set of all continued fractions (1.2) of degree n and the same
type (@, ). Denote this set as I'5. We call I'; a continued-fraction cell of type
(m, 8). Each member of such a cell is uniquely specified by specifying the real
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numbers
oy k=1,...,n)k)=1,...,n)

appearing in the atoms a,(s) =s" + a; 8™ '+ +ay, (k=1,...,r), and
the real numbers B, defined by B, =86, expB (k=1,...,r). Since Yo py =
n, we conclude that the cell I'; is homeomorphic to the Cartesian space R"™*".

Remark 2.1. From the formula (1.3) of Frobenius, it is clear that the Cauchy
index is constant over a given cell I';.

3. The space ratn

Following Brockett [1], we denote as rat n the set of rational functions of the
form

__Gn-1s" g0 _g(s)
g(s) —on n—1 -
S"+Ppys" 4o+ po pls)
with real coefficients such that g(s) and p(s) are coprime. The space ratn is
visualized as an open subset of R?" with its usual topology by identifying g(s) as
in (3.1) with the point (¢,—-1, . - - , Qos Pr-1» - - - , Po) € R*". From [1] we have the
following basic result.

3.1

THEOREM (Brockett). The space ratn has n + 1 arcwise connected components.
The Cauchy index viewed as a continuous map from rat n into the set {—n, —n +
2,...,n—2,n} distinguishes the components. [

For ,me{0,...,n} with I+ m=n, we denote as rat (I, m) the connected

component

{g : geratn, o(H,)=1-m}.
The geometry of rat n has been a subject of serious study since the appearance of
[1]. See also the papers [2, 3, 4, 16].

The map g(s) — —g(s) is a homeomorphism of rat (/, m) onto rat (m, [). In [1],
it was shown that rat(n, 0) is homeomorphic to R** and rat(n—1,1) is
homeomorphic to R?>~!x 8! Detailed information about other connected
components has been elusive.

The continued fraction expansion appears to be a useful tool in this regard.

Observe that each connected component rat(/, m) has a continued-fraction
decomposition, i.e. it is a union of disjoint continued-fraction cells:

rat(l, m)= |J T} 3.2)
(m.8)eS; n
where

p=(_[11,...,u,),|p|=l+m,
(n, 8): 6=(8y,...,86), ‘ (3.3)

2( n5])1+_(1_)i~_1 l-

i=1 j=1

Sl,m =
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In the next section, we present preliminary results towards showing that the
decomposition (3.2)-(3.3) of rat(l, m) is a cell decomposition, in a precise
topological sense. Our results shed further light on the topology of rat (I, m). We
note here that in [9, 10, 11, 12], cell decompositions based on the Kronecker and
Hermite indices are presented for various spaces of system-theoretic interest.

4. Towards a topological cell decomposition of rat (I, m)
A few general definitions are needed before we proceed further.

DEerFINTTION 4.1 Let X be a locally compact topological space. A decomposition
Z,:={X,:aeA} of X into disjoint subsets is called a topological cell decom-
position if it satisfies:
(i) each X, is homeomorphic to some R, with n, € N;

(i) {X, : o € A} is locally finite;

(iii) the boundary X, =X, \X, of X, is a union of cells Xz with dim X, <
dim X,.

Given such a cell decomposition, we have an induced partial order on A known
as the adherence order:

asp & X,cX;.

DeFintTioN 4.2 If ge N and &, = {X, : a € A} is a topological cell decomposi-
tion of X, then

c(&4):=card {a € A:dim X, =g}

is called the gth type number of the cell decomposition &,. The topological cell
decomposition &, is said to be finite if A is finite (and hence all type numbers are
necessarily finite).

Let X be a topological n-manifold and H,(X, Z;) its gth singular homology
group with coefficients in Z,. Let b,(X, Z;) =rank Hy(X, Z;) (k=0,...,n) be
the mod-2 Betti numbers of X. Then the following corollary of a result in [15:
p-57, Thm 3.3] appears in [12].

THEOREM Let ¥,:={X, : a € A} be a finite topological cell decomposition of a
topological n-manifold X. Then

(X)) =b, (X, Z) (k=0,...,n). O

In Section (4.1) below, we give explicit combinatorial formulas for determining
the number of continued fraction cells of given McMillan degree and cell
dimension n + m. In Table (4.1) we summarize our results for McMillan degree
=6. In Section 6, we investigate the adherence order. Our results here are only
partial and, we hope, pave the way towards settling the following conjecture.

ConJECTURE  The decomposition of each connected component rtat (I, m) into
continued fraction cells is a cell decomposition in the topological sense. O
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4.1 Dimension formulas

For a fixed McMillan degree we will compute now the number of cells of given
dimension and Cauchy index in the decomposition arising out of the continued
fraction representation.

DEFINTTION 4.3 We let:
(i) v**™ = number of cells of McMillan degree n, Cauchy index k, and cell
dimension n + m.
(ii) v*™ = number of cells of McMillan degree n and cell dimension n + m.
(iii) v* = number of cells of McMillan degree n.
Clearly, v*™ = L2, V5™ and v = L7, _, v*™.

THEOREM 4.1 The following formulas hold.

n-1
i vn.m=2m( ), s =7. n-l‘
@) m—1 (i) v'=2-3
Proof. (i) v*™ is the number of cells of the form I';"'"5=. Thus, it corresponds to
the number of ordered partitions of the integer » into sums of m positive integers,
i.e. n=pu,+ -+ p,, together with m free sign choices. The ordered partitions
are best parametrized by the indices of the last elements, i.e. by k) <---<k,, =

). he

n
n, with k; =X/, u,. Since k., =n, the number of such choices is (m _1

number of free sign choices is 2™ and hence (i) follows. Formula (ii) follows from
the binomial expansion

> 2”'(":1)=2 2 (:':11)2"*-11"-"'=2-3"-1. o

mm=l m m=1

The computation of v"'*™ is much more complicated. We do not have an
explicit formula. However, we shall provide an algorithm for this purpose.

Recall that the generic situation is given by cells of the form I'3": 4", where
;=1 and 8§, = £1 for all i. When the parameters in the continued-fraction
expansion go to infinity in certain directions, neighbouring atoms in the
continued-fraction expansion coalesce into one of degree equal to the sum of the
degrees.

We need to keep track of the number of coalescings in a continued fraction and
one way to do this is to introduce the notion of cell configuration. By a cell
configuration, we mean the assignment of a formal sum Y., w,§ to each
continued fraction, where w; denotes the number of atoms of degree j in the
continued fraction expansion. It is clear that this is a constant map over a cell.
But, since the cell configuration does not keep track of the order of the sequence
of degrees of atoms, more than one cell may have the same cell configuration.
For convenience, we shall also use the phrase ‘cell configuration’ to mean the
disjoint union of all cells that have the same formal sum assigned to them.

The generic case is assigned the cell configuration nS'. After p coalescings we
obtain cell configurations w,S'+ - - -+ @, 57", with the following constraint,
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given by the McMillan degree n; that is,

p+1

z Jw;=n.

=1
We will use |T 08| =|w,S' + - - - + @,.,57*"| to denote the number of cells of
this configuration. For example |nS'| =2". Indeed, from the generic configuration
nS' we obtain after one coalescing the cell configuration (n —2)S* + 157, i.e.
n —2 atoms of degree one and one of degree 2. This corresponds to cells of
dimension 2n — 1, one less than the generic case. The total number of cells of

1 )2"", where 2"~! corresponds to the number

dimension 2n — 1 is given by (n

-1 _
of free sign choices and (n 1 ) to the position of the degree-two atom in the

continued-fraction expansion. Naturally this is in agreement with Theorem 4.1.
Allowing two coalescings to occur leads to two different configuration types:

(n—=3)S'+58°  (n—4)S*+252

Now,
I(n = 3)S! + 57 = (" N 2)2"-2 (n=3),
|(n —4)S* +28?| = (n ;2)2"”2 (n=4);
50 .
(e e s
v (T N ()2 L =)

again in agreement with Theorem 4.1.

Of course, in general, a cell configuration will consist of cells of different
Cauchy indices. Thus, in the generic case nS', the Cauchy index can be any
integer in the sequence n, n —2, ..., —n. The Cauchy index n — 2k is obtained
by exactly k£ negative signs in the sequence By, fof,, . . .. Thus

AN

and obviously Yi.o (Z) =2". This gives us a refined description of the cells of

McMillan degree n and cell dimension 2n.

In the same way, the cell configuration (n — 2)S" + 157 splits according to the
Cauchy index. In this case, the range of possible values of the Cauchy index is
n—2,n—-4,..., —(n—2). The Cauchy index n — 2k is obtained by exactly k — 1
sign choices in the sequence By, BoB;, - . . . Thus

R ¢ oy B )
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Here, the factor 2 corresponds to the two possible signs of the degree-two atom,

n—1 . e . . .
1 corresponds to its position in the continued-fraction expansion, and

(: _ f) corresponds to the k — 1 sign choices of the degree-one atoms. It is easy
to check that

2T (1 ),

so that indeed

:S vnn—2kn 1_ = yhn- 1
k=1
Cells of dimension 2n —2 correspond to two coalescings, and hence the
corresponding cell configurations are (n —3)S*+ S° and (n — 4)S"' +25% In the
cell configuration (n—3)S'+ 5% the range of values of the Cauchy index is
n—2,n—4,...,—(n—2). The Cauchy index n — 2k is obtained by k —1 sign
—-2\/n—2 . .
choices so we have (n 1 )(Z _ 1) cells giving Cauchy index 2n — k. In the cell
configuration (n — 4)S' + 252, the range of values of the Cauchy index is
n—4,...,~(n—4). Here we assume implicitly n =4. The number of cells in
—-2\/n—4
this configuration yielding Cauchy index n — 2k is clearly 22(n 5 )(: _ 2). For
k =2, the number of cells with cell dimension 2n —2 and Cauchy index n — 2k is

S (6 I O

N (W F kA T
(e )
()

again in accordance with Theorem 4.1.
Now we present the general arguments. Given any configuration L{*' w5/
obtained after p coalescings, the two constraints
p+1 p+1
D jwy=n, >, w,=n—p (4.1a,b)
j=1 j=1
must be satisfied. Let Q,, be the set of all vectors (w,, ..., w,4;) that are
nonnegative integral solutions of the equations (4.1). Equation (4.1b) implies that
there are exactly 2"7# sign choices in this cell configuration. The number of

Now
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orderings is given by the multinomial formula

(n—p)!

weQ, @yl wp+l!

z w,S”=2""’ E _(Pl)'_

weQ,, !

we,, Wyl Wp 41!

Comparing with Theorem 4.1(i), we conclude that under these constraints the
following combinatorial formula holds:

n—1 n—p)!
R Sl eyt
p 1 w6, , @, wp+1!
(It might be of interest to give a direct proof of this formula and have some
intuitive interpretation of it.)
It is instructive to compute the numbers v*"*~26"~? by the use of equations
(4.1). We observed that

- (n—p)!
j| = on-p S A < A
wezﬂ._, wls | 2 uezﬂ,_, wl!,' "wp+l!.
However, the cells in the cell configuration ¥, a),S’ are distributed in different
connnected components of ratn corresponding to different Cauchy indices. In
fact, after p coalescings the Cauchy index range is from n —2[3(p +1)]to
2{3(p +1)] — n. The number of cells in the cell configuration ¥ w;$’ that have
Cauchy index n — 2k will be denoted by |¥ w5/,

If we denote by o, and o_ the sum of the even w, and odd w; of the cell
configuration, i.e.

lie+1)

lip]
o, = w2y, g_= § @1y
j=1 =0

then we have the following result.
THEOREM 4.2

p+1

2 “’JSI

j=1

(n—p)! ( o_ )
=20 .o
k 2 wll e pr! k— i(n - 0_)

Next we work out some specific examples. If p =3, then the solution vectors to
the equation pair

w1+a}2+w3+w4=n—3, (D2+2ﬂ)3+3(04=3
are (n-4,0,0,1), (n—4,1,1,0), and (n—-6,3,0,0), and the corresponding
cell configurations are

(n—4S'+8* (n—585"+5*+5, (n—6)S"+352
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respectively. Now,
n—-3N\/n-4
it —4)s" + 5% =2(" | )(k—Z) (k=2),
-3 n—4
P TR TI CID S (k)L ( ) =
(= =5) Sh=20 5 \k—2) ®=2

6

|(n - 6)S* +38Y, = 23(" ; 3)(: ~ 3) (k =3).

For p = 4, the solution vectors to the equation pair
Wt tws=n—4, w,+20;+3w,+4ws=4
are
(n-5,0,0,0,1), (n-6,0,2,0,0), (n—6,1,0,1,0),
n-7,2,100), (n-8,4,0,00),

and the corresponding cell configurations are

(n—5)S'+8°, (n—-6)S'+28% (n—6)S'+5*+S5",
(n—7NS'+25°+8%  (n—8)S'+45?%,

respectively. A simple computation leads to

I(n - 5)S" + 5%, = (" ;4)(2 :;) (k=2),

1 s _(n—4\/n—-4 .
-6 +25%=("2%)(220) =2,
L aval g Q2 o4 o2 (4! n—=6 -
(2 =)' +5°+ 8 =22 " S (k—3) k=3),

— 1 — M n—6 -
ln=7)s +2SZ+SS|""22(n—7):2!1!(k—s) (k=>3).

n-gs'+ast=2(" )2 7F) k=)

It is of interest to compute the alternating sums Li2g(—1Fv*"~"77 We
cannot yet give a general formula for this alternating sum. However we compute
this for small values of k. Indeed, since after p coalescings the Cauchy index is
bounded by n —2[3(p + 1)], only the values p =0, 1, 2 contribute to the Cauchy
index n —2 and only the values p =0, 1, 2, 3, 4 contribute to the Cauchy index
n—4. Now

e ()T

p=0
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Similarly, if £ =2,

S () 0)-

p=0 1
(n —2)(!1 —2) + (n —4)(n —2)22__2(n —3)(71 —4) _2(r1 -3)! (n —4)
1 1 0 2 1 0 (n=-51\ 0
+(n —4)(n —4)+(n —4)(n —4) —0
1 0 2 0/

as can be verified by expanding terms. These examples as well as others from
Table 4.1 lead us to conjecture that for all 1 sk =<n — 1 we have

n—1

D (—1pyrnn-r =, (4.2)

p=0
Remark 4.1. The specific examples worked out above suggest the following
algorithm for computing v™*~2%"~#_ First determine the set Q,,. Then for the
given k and each member w of this set, use the formula in Theorem 4.2 and add
up the results to obtain the required number v*"*~2""7,

Remark 4.2. The expression on the left of equation (4.2) is an Euler-
characteristic-like expression.

TaBLE 4.1

Cauchy index (k)
n n+m ym
6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6

1 2 1 1 2
2 4 1 2 1 4
2 3 2 2
3 6 1 3 3 1 8
35 4 4 8
3 4 1 1 2
4 8 1 4 6 4 1 16
4 7 6 12 6 24
4 6 2 8 2 12
4 5 2 2
5 10 1 5 10 10 5 1 32
5 9 8 24 24 8 64
5 8 3 21 21 3 48
5 7 8 8 16
5 6 1 1 2
6 12 1 6 15 20 15 6 1 64
6 11 10 40 60 40 10 160
6 10 4 40 72 40 4 160
6 9 18 44 18 80
6 8 3 14 3 20
6 7 2 2

Entries in columns 3 to 15 are values of v**™
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5. Scaling and continued fraction cells

In [2], the authors present an analysis of the action of certain natural scaling
groups on the space rat n. Consider the one-parameter groups:

(1) s> as, R, (frequency scaling);

(2) s—>s+ 0, ceR (shift of origin);

(3) g(s)y—=>mg(s), meR, (magnitude scaling); (5.1)

(4) g(s)—=>g(s)/[1+kg(s)], keR (feedback);

(5) g(s)=c"(sI—A)"'b—>c"(sI — A)'e*"b, TeR (time shift).

The scalings are collected into sets A and B as A={1,2,3,4} and B=
{1,2,3,5}. The scalings in set A and set B generate, respectively, two
four-parameter Lie groups G, and Gp that act on ratn. The action of G, is
defined by

mg(as + 0)
1+kmg(as + o)

$a:Gaxrtatn—ratn: ((a, m, o, k), g(s))— (5.2)

The action of Gy is defined by

¢p: Gpg Xratn—ratn
:((m, 0, @, 1), g(s) =c"(sI — A)"'b) —> mc"[(as — )] — A] " 'e**B. (5.3)

From (2] it is known that the scalings (5.1) and hence the actions (5.2)-(5.3)
leave invariant a connected component rat (/, m). We are interested in how the
scalings respect the continued-fraction expansion (1.2). We leave it to the reader
to verify the results of Table 5.1.

From Table 5.1 and the definition of a continued fraction cell in Section 2 we
conclude the following result.

THEOREM 5.1 The action ¢ of Ga leaves invariant the continued fraction cell
decomposition. (1

The time-shift scaling (5) does not leave invariant the cell decomposition. This
can be seen by the following example.

ExampLE 5.1 Let 2>0. Then g(s) = (as + 1)/s* belongs to rat (1, 1). Under the
time shift T (scaling (5)), g(s) transforms into g.(s) = [(t + a)s + 1]/s%. Now g(s)

TaBLE 5.1

Scaling Invariants of continued fraction

degrees of atoms; signs of ;.

degrees of atoms; values of §,.

all atoms; all 5, except fo.

all atoms except a, which is perturbed
by a constant;

all B,.

W N =
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has the continued fraction expansion

a

Ta (5.4)

(s+1/a)

and hence g(s) belongs to the cell I'i't;. But, for T=—a, we have g.(s)=
1/s2eI?.

One thus expects the action ¢y to mix up the cells. Details of this process will
be explored in a forthcoming paper.

We note that in [7] it was shown that the groups G, and Gy act freely on
rat (I, m) iff |l — m|> 1. However, for G, to act freely on a cell and at the same
time leave invariant the cell it is necessary that the cell be of dimension =4. From
Section (4.1), we see that this is true for all cells if # = 3. Thus the condition that
the magnitude of the Cauchy index exceeds unity gives us more refined
information about the action of the scaling group G, when restricted to a cell.

Before we close this section we would like to draw attention to a different
decomposition of rat (/, m) presented in [14]. The main result of that paper is as
follows.

THEOREM [Krishnaprasad]

Each connected component of rat(/,m), with [+m=n, admits an n-
dimensional foliation whose leaves are diffeomorphic to T* x R"~*, where & is
constant on an open set. Further, on rat (n, 0), X =0 and the foliation is a trivial
fibration. Here T* denotes the k-torus and the largest value k can take on a
connected component of rat (I, m) is

kmax= 3(n = [ —m])]. O

The integrable n-plane distribution associated to the foliation in the above
theorem is generated by n vector fields X°, X, ... X", defined by

s—-1/a)+

n—=1 n-—1
r A cforTr 3
X = 2 E ([A°(p)] ):+1,;+1q,5— ,
im0 jmQ qi
where r=0,...,n—1, and A%(p) denotes the unique companion form matrix

associated to the polynomial p(A) =A"+ p,_,A""' + - - - + p,.

Note that the vector fields X° and X' generate respectively the magnitude (3)
and shift (5) scalings. The flows of the vector fields X" leave invariant the poles of
the rational functions and hence we conclude that all rational functions on the
same leaf have the same poles. It would be interesting to understand the
geometrical relationships between the foliation above and the decomposition of
rat ([, m) into continued-fraction cells.

6. On the adherence order

In order for the continued-fraction decomposition to be a cell decomposition in
the topological sense, it is essential that the cells fulfil the closure condition, i.e.,
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the boundary of a cell consists of cells of lower dimension. We do not at present
have methods for verifying that this holds for an arbitrary cell in an arbitrary
connected component rat (I, m). However, calculations in low dimensions appear
to confirm this.

We will use the notation

I'\al ..... Cm I'va"’l ..... a;,,,-,

O -+ Tmy—1 TQs-ves O -2

for a permissible cell coalescing. We will also call it a transition rule. A cell is
called a terminal cell if no more coalescings are possible. Naturally any cell of the
form I'g is terminal. So are all cells of the form

F:' ..... ay

0 T

with all a; odd and all o0, equal to 1, or those with all a; odd and all g; equal to 1
except g, equal to —1. This is clear from the constraint that the Cauchy index
remains invariant under coalescing.

To verify that the appropriate transition rules are realizable, we have taken a
brute-force approach in low dimensions (McMillan degree <4). In this the shift
scaling has been found to be useful since it does not preserve the cell
decomposition. We plan to present details in a future paper.

Acknowledgements

This research was supported in part by the National Science Foundation under
Grant ECS-82-19123, by the Systems Research Center through the NSF Grant
OIR-8500108 and by the Minta Martin Fund for Aeronautical Research.

REFERENCES

BrocketT, R. W. 1976 Some geometric questions in the theory of linear systems, IEEE
Trans. autom. Control AC-21, 449-455.

BrockeTT, R. W. & KRISHNAPRASAD, P. §. 1980 A scaling theory for linear systems.
IEEE Trans. autom. Control. AC-25, 197-207.

ByrnEs, C. I. & Duncan, T. E. 1981 On certain topological invariants arising in system
theory. Pp. 29-71 in New Directions in Applied Mathematics (Ed. G. Young).
Springer, New York.

DEeLcHaMPs, D. F. 1985 Global structure of families of multivariable linear systems with
an application to identification. Math. Syst. Theor. 18, 329-380.

FroBenius, F. G. 1895 Ueber das Traegheits gesetz quadratischer Formen. J. reine
angew. Math. 114, 187-230.

FuHrMANN, P. A. 1983 On symmetric rational transfer functions. Lin. Alg. & Applics 80,
167-250.

GANTMACHER, F. R. 1959 The Theory of Matrices. Chelsea, New York.

Gracs, W. & LinpQuist, A. 1983 On the partial realization problem. Lin. Alg. &
Applics 50, 277-319.

HewLMkE, U. 1982 Zur Topologie des Raumes linearer Kintrolisysteme. Ph.D. Thesis,
University of Bremen.

HewLmke, U. 1982 The topology of the space of linear systems. Proc. 21st IEEE Conf.
Decision and Control, pp. 948-949. IEEE.

Heimke, U. 1983 A cell decomposition for spaces of linear systems. Development et



150 P. A. FUHRMANN AND P. S. KRISHNAPRASAD

Utilisation d’Outils et Modeles Mathematiques en Automatique, Analyse de Systemes
et Traitement de Signal, Coll. CNRS, RCP 567, Belle-1le, pp. 623—637.

HewmMke, U., & HinricHseN, D. 1983 Canonical forms and orbit spaces of linear systems.
Forschungsschwerpunkt Dynamische Systeme, Report no. 97, Univesitit Bremen.
KarmaNn, R. E. 1979 On partial realizations, transfer functions and canonical forms. Acta

Polytechnica Scandinavica Ma 31, 9-32.
KRIKSHNAPRADAD, P. S. 1979 Symplectic mechanics and rational functions. Richerche di
Automatica 10, 107-135.
Massey, W. 1978 Homology and Cohomology Theory. Marcel-Dekker, New York.
SEGAL, G. 1979 The topology of spaces of rational functions. Acta Mathematica 143,

39-72.



