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Abstract This paper is concerned with the exploration of reduction and
explicit sotvability of optimal control problems on principal bundles with con-
nections from a Hamiltonian point of view. The particular mechanical system
we consider is a rigid body with two driven oscillators, for which the bundle
structure is (SO(3) x R?, B2, §0(3)). The optimal control problem is posed
by considering a special nonholonoric variational problem, in which the noa-
holonomic distribution is defined via a connection, The necessary conditions,
for the optimal control problem are determined intrinsically by a Hamiltonian
formulation. The necessary conditions admit the structure group of the princi-
pal bundle as a symmetry group of the system. Thus the problem is amenable
to Poisson reduction. Under suitable hypotheses and approximations, we find
that the reduced system possesses additional symmetry which is isomorphic
to §1. Applying Poisson reduction again, we obtain a further reduced system
and corresponding first integral. These reductions imply explicit solvability

for suitable values of parameters.

1 Introduction and Background

An interesting problem in multibody mechanics is the problem of nonholonomic
motion planning, or the kinematic control problem. In recent research on various
multibody mechanical systems with symmetry, the theory of principal bundles with
connections has lead to clear insight into the geometric structure of the problem,
and provided a common framework for the formulation of related optimal control
problems. However, explicit or partially explicit solution to the necessary con-
ditions, given by differential equations on phase space, for the optimal path and
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control is still a challenge. Although, under certain conditions, the symmetries of
the systerms imply the existence of conserved quantities for the differential equations
given by the necessary conditions, working with local coordinates at the early stage
of the analysis usually causes difficulties in discovering such quantities. In this pa-
per, we consider a particular mechanical system consisting of a rigid body and two
point-masses, for which the structure group of the principal bundle is non-Abelian
in general. We will formulate the related optimal control problem and the cor-
responding necessary conditions intrinsically from a Hamiltonian perspective and
explore their explicit solvability. Some results in this paper have been presented in
our previous work [1]. Here, we provide detailed proofs of those results.

As in [1], the kinematic control problem considered is based on the following
abstract geometric objects. Consider a simple mechanical system with symmetry
(following terminology of Smale {2]), (@, K, V, &), where the configuration space ¢J
is a Riemannian manifold with metric X and the Lie group & acts freely on ¢} on
the left by isometries and leaves the potential energy V invariant. The action of
& on @ is denoted by ®, Together with this system is an equivariant momentum
map with respect to the tangential action &% of G on T'Q, J : TQ — G* satisfying

(J(g,v), &) = (K 0)(E0(0)) = K()(vg, €0(a)),  VEEG, (1.1)
where G* is the dual of the Lie algebra, denoted by G, of G and K b is the standard
Legendre transform. In addition, we also consider @ as the total space of a principal
fiber bundle, p = (Q, B, m, G), where B = /G is called the base (or shape) space
and i : € — B is the bundle projection. On this bundle, the mechanical connection
is constructed as follows. At each point g € @, define the locked inertiac fensor as

the mapping
Ig): G — G {1.2a)

such that
(I{g)n, &) = K(a){ne(g),éalq)) 9YmEEl. (1.25)

" Then, the mechenical connection is deﬁned by the G-valued one-form:
a:TQ —G: (g,v) = ofg,v) =17 (@) (g, v). (13)
Indeed, one can show that a(én{g)) =§, V€ € G and
(@;a)(q,v) = Adyalq,v), Vge G

The mechanical connection appears to be originally due to Smale and Kummer (see
[3]}. With this well-defined connection, we have a vertical-horizontal splitting of

the tangent bundle 7'Q,
T,Q = (Ver), ® (Hor), (1.4a)

such that, for each v, € 7,0,
vy = (afu))a(@) + (v ~ (a(vg))a(a)) "
= (1)~ w)o(a) + (vo — (I{@) " 1)e(a)),
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where p = J(g,v). It is readily shown that _
Hor = {(¢g,v} € TQ | J(q,v) =0}, (1.5)

and the splitting in (1.4) is the orthogonal one with respect to metric K.

To formulate the kinematic control problem explicitly, we consider the trivial
bundle, ie., p = (B x G,B,n,G). Here, the control is infernal to the system,
which leaves invariant the conserved momentum map J. Since, by definition, a
principal fiber bundle is locally trivial, the equations we have below are locally true

in general.
Represent the tangent space at each point (z,g) € @ by

T(E,Q)Q =T,B x TgG
and let a tangent vector in Ti; Q) be represented by
Uiz, q) — (j}g)(x,g) = {i:;gg)(:n,g)v
where £(t) = TyL,g € G. The Lie group G acts on @ following the rule

®(h, (z,g)) = (z,hg), where h,g € G and z ¢ B. Then the infinitesimal gen- .

" erator corresponding ton € G is
0la) = G| Hexa(en), (7,9)) = 0.7). (1)
Using the G-invariance of K, we have
I(g,v) - = K(=,9)((&,98), (0,7 - g))
= K(z,e)((¢,£), (0, Ady— 7))
= (I()€, Adg-17)+ (3(2)(&), Adg-1m)

= (Adg-: (I(x)¢ + y(z}(£)), M),

where e is the identity element in ¢ 1(x) = I(z, e} is referred to as the (local) locked
inertia tensor at z, and represents the metric on G, and j(z) : T, B — G* comes
from the cross term when the metric K is written in terms of metrics on B and G.
Here, the metric on B is induced from K. Therefore, we have, for u=J (g,v),

p = AdS o [(@)€ + Adj g(2) (&) (1.7

or . .
§=1(z) Adgp—I(z) i(2)F
or, by left action,

. S ~ -1 . -

§(8) = o(t) - (I(z)  Adjp—1I(z) s(=)i). (1.8)
Given a closed curve in B and an initial point gu = (zg,g0) in @, using (1.8} one
will be able to compute the shift, or the phase, in G. The phase generated by the

first term in (1.8). is referred to as a dynamic phase and the phase generated by
the second term in (1.8) is the holonomy, referred to as geometric phose. One can
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show that E(ac)"ij(:r:)(m) is, in fact, the value of the local connection form of the
mechanical connection at (z, &).

Assuming that the vector & or the velocity of the path in B can be directly
controlled, from (1.8), an associated kinematic control system can be set up as

I =u,
{ _ J I (1.9a)
g=g Uz) Adju—-Iz) s(z)u),

or simply
¢=X,(q) + H(gu, (1.96)
for g = (g,z) € @, where X,,(¢) = ((),g-f(:b‘)—l Ad; p) s the drift, H(q) : Ty (B) —
T,Q is the horizontal lift operator and u € Ty(y{B) is a tangent vector on shape
space representing controls. Two control problems for this system can be framed

as follows:
(P1) Given two points go and g1 in @, find (') steering gp to q at a

specified time;

(P2) Given two points gp and ¢; in @ onthe same fiber, find u(-) steering

qo t0 gy ‘while minimizing =

/(;T(u,u)g dt

for the Riemannian metric {-,-}g on B and the fixed final time
T > 0 subject to (1.9).

The problems (P1) and (P2) are standard problems in control theory, namely
controllability and optimal control. If y = 0, the problem of controllability is
‘settled by appealing to Chow’s theorem [4]. In addition, if p = 0 and the system
is controllable, {P2) is the ischolonomic problem in [5], or a special case of the
problem of singular Riemannian/sub-Riemannian/nonholonomic geodesics [6, 7).

In the next section, we will formulate the control system and corresponding
optimal control problem for the system of a rigid body with two oscillators following

the above procedure.

2 Mechanical Connection for the System

In this section, we give an explicit expression for the mechanical connection for
the system consisting of a rigid body with two ( driven ) oscillators.

The mechanical system we consider is shown in Figure 2.1. Here, 7o is the
position vector of the center of mass of the rigid body or carrierrelative to the center
of mass of the system; r; and rp are the position vectors of two oscillators with
point masses my and my relative to the center of mass of the system, respectively;
the mass and moment of inertia tensor of the carrier are denoted as mg and Ip,
respectively; @1 and @ are the position vectors of two oscillators relative to a frame
(not displayed) fixed on the carrier. We assume that no exterior force/torque affects
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Figure 2.1 A Rigid Body with Two Oscillators

the system and the potential energy V is zero. The inertial frame can be placed at
the center of mass of the system and ry, r; and ry are related by

2
> mrs =0, (2.1)
;=0

For now, r; and 1o {or @1 and Q) are assumed to be arbitrary time dependent
vectors. Later, we will impose constraints on them to study the effect of their
motion on the motion of the carrier. :

From the above setting, we have the configuration space Q = (%)% x SO(3)
with coordinates ¢ = (1,79, A) and its tangent bundle TQ = (TR?)? x T'SO{3)
with local coordinates (g,v) = ({r1,72, 4), (’f‘l,'f'g,Aﬁ)). Here, denoting by 2 the
vector of angular velocity of the carrier with respect to the body fixed frame, we
used the fact

A=A (2.2)
with the standard isomorphism
0 —X3 o

“R® - 50(3) : (z1,72,23) > | Za 0 -—-n
. —I9 o5} 0
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The Lagrangian of the system.can be determined easily as

o ) 2 .

L{(r1,72, A), (71,72, AQ)) =3{Q, Q) + %(ml + ﬁ)(ﬁ,f’l)
Mg

(2.3)

mym

1 mi\,. . 2. .

+§(mz+-—‘)(fz,?‘2)+ {F1,72},
_ mo
where (-, -} is the inner product in R®. This Lagrangian is given by a Riemannian
metric K on @, i.e, '
L(g,v) = $K(9)(v,v),

where, for (ul,uz,Aﬁ) and (IU1,'1U2,A§) € Ty ra, ) Qs

K(rs, 2, A) (w1, ug, ADQ), (wy, w, AE))

2 2
A = m ma
= (9L + (ml + mo) {ur, ws) + (mz + mo)(uz,wz) (2.4)

g m1ma

{1y, wa) + —W (g, wn).

+
mo

Let G = S0O(3) act on Q by
&2 SO(3) % (R%)? x 50(3)) — (R%)2 x SO(3),

{2.5)
(A, (re,r2, BY) v (Ary, Are, AB).

From (2.4}, one can show that G acts on @ by isometries. Therefore, the system
(@ = (R®)? x SO(3),K,V = 0,G = S0(3)) is a simple mechanical system with

symmetry.
- By standard intrinsic calculations on SO(3} {cf. [8]}, one finds the Legendre

transform, at (g,v) € TQ, as
K’ (q)(v) = DyL(g,v)

= 3N, mumg, m3 (2.6)
= (AIOQ: (ml + ﬂ)ﬁ ERR KTy (mz + —2)?‘2 + m;mzh).
Ma mo Mo My

The infinitesimal generator of the action in (2.5) corresponding to fe s0{3) is

folg) = g_

£

(e, (r1,73, A)) = (Eri, Era, EA). 2.7

e=0

Then, using (1.1}, (2.6) and {2.7), the momentum map can be written explicitly as,
fOI' M= J((rlg 3, A): (7-'15 TA‘Q} AQ)):

2
n= Al + (ml + %)Tl X 1+ mmse
0

m% . Ty
+ (mz + é)rg X g +
g

ma .
Ty X T1.
Q

One can show that u is, in fact, the total angular momentum of the sjzstem._
It is clear that ((R®)2xS0(3)) is a trivial bundle with the structure group SO(3)
and the base space (R%)? coordinatized by (1, @2). Using coordinates (G, @a, A}

e L e Rt A B T g
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" for the configuration space @}, the angular momentum (2.8) of the system can be
rewritten as follows. From Figure 2.1 and Equation (2.1}, we have

T'g='T'+AQ5, i=1,2

and
r=—Ale1Q1 + €2Q2),

where

14 .
£ = ——— i=1,2,
mq +my +ma

Equation {2.8) can be rearranged as

= A((fo+Afa)Q+D1Q1 + D2Qa), {2.9)
where . N R R
Aly = —m(e1@f + 205 — (e1Q1 + e2(2)?)
Dy =m{(1 —e)a@r 1620]
Dy = m[—€162@1 +e(l— e2)Q2)-
By (2.9), we have = o
Q= (Ip + Alo) HATp— (D11 + D2Q2)) (2.10)

or, by {2.2),
A= Al(To + ALY AT i — (Io + Alp) " (D1Q: + D2Q3) ] (2.11)
where [-]” 2 (/3 Comparing {2.11) with (1.8), we see that
Toek(Qr, Q2) = To + Al
is the {local) locked inertia tensor, and
Q1 Q) (@1, Q2) B [(lo + ALY HD1Qu+ Daa)]
is the value of the (local) connection form at the point ((Q1,Q2), (Q1,Q2)) € TB

with respect to the mechanical connection. This connection form can be explicitly
given by 7
©(Q1,Q2) = I (D1dQ, + D2dQy)
=mi 2L (1 - e G — e162Q2)dQ1 (2.12)
_ + (—ere2Q1 + ea(1 — €2)@2)dQa,
where the operator "is the inverse of operator™
Equation (2.11) can be used for computing the phase of the system and the

related optimal control problem mentioned in the preceding section. In particular,
when g = 0, it can be used to compute holonomy, or geometric phase and to solve
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the isoholonomy problem. In this case, the angular velocity vector of the rigid body
in a body fixed frame relates to the connection form by

Q= —@(Q1, Q2}{(Q1, Q) .
=mIZL (1 - )81 — e16202)0 (2.13)
+ (162G + e2(1 — €2)Q2) Qs

In the following sections, we will consider the case g = 0 only. In addition,
we will assume that the oscillators are confined to move along certain guide ways.
Under this assumption, the bundle structure will be simplified and the equations
for phases and the connection form on such a bundle can be easily derived from

those we have found.

3 Planar System

‘We now assume that the vectors r, B}y and BQ2 are kept in the same plane in
inertial space and that m; = may (50 €1 = ¢ 2 ¢). In addition, we choose a body-
fixed coordinate system (or frame) 0-zyz on the carrier with 0-z axis perpendicular -
to the plane and the origin of this frame is placed at the center of mass of the
carrier (see Figure 3.1). We also assume that the two oscillators move along two

parallel guide ways such that, in the O-zyz frarne, at each time ¢,
Ql = (""lsml(t)a OJT and Q2 = ( la$2(t)y0)T1

where z; (t), z2(t) € R and [ is the distance of the guide ways to the origin of O0-zyz
frame. It is clear that the configuration space is reduced to @ = R? x 51, which will
be coordinatized by (z,, zs, ), and the principal fiber bundle is (R? x §1,R?, 7, S*).

Figure 3.1 A Rigid Body with Two Oscillators: Planar Case
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Setting p = 0, the angular velocity {3 = (Qx, Qy,,Q2,)% in (2.13) is of the form

Qa: = 0,
2, =0, (3.1)
Qz = 9 = md (E]_ - i‘z),

lock

where

Tock = I + me(2 + (1 — €)z? — 2ezyma + (1 €)z2),
with I, the moment of inertia of the carrier about z axis. It is obvious that the
Jocal connection form corresponding to the mechanical connection on the principal
bundle (R? x S1,R?,87) is

ey - di). (3.2)

wor,z2) = ~ 7
QC.

For simplicity, we further assume that the amplitude of motion of each oscillator

is very small in comparison with the the spacing of two guide ways, i.e.,
|z /T & 1. (3.3)

Under this assumption, using Taylor expansion (up to quadratic terms of Ti), We
get an approximate w {with the same notation}
mel(I, + 2mel® — me(20% + (1 — e)a§ — 2emyzma + (1 — €)z3)}
= - (dz) — dza).
(I, + 2mel?)?

The above procedure is called localization in [9). Since we are interested in the
motion of the carrier generated by the motion of the point masses on a closed curve
in shape space, the above w can be further simplified as follows. Applying the
exterior derivative to the above equation, we have

mel

2 2
o — — ldzy).
(I, + 2mel?)? d(zydz; = wado)

dw =

Then, under the assumption (3.3), we can take (for closed paths in shape space)

mel
W = mm(x%dfﬂz — ﬂfgdﬂ&'l) . (34)

modulo an exact one-form.
Let c(-) be any closed curve in shape space R?. Since 51 is Abelian, from (1.8),

the corresponding geometric phaSe or holonomy, i.e., the drift of the carrier about

the z-axis, will be
mel ' .

Using (3.5), we now compute the geometric phase for the case in which both os-
cillators follow sinusoidal motions with different amplitudes, frequencies and phase

angles.
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Let
z1{t) = a1 sin(@t + ¢1} and  z2(t) = agsin(ndt + ¢2)
for t € 10,27 /@], where &, a;, ¢; are real numbers and n is an integer. Then, the
closed curve in the shape space forms a Lissajous figure. Substituting the above
z;(t) in (3.5}, we have
5, = { __E__L_’TEZ(};'_Q;A:;‘;imz cos{po — 2¢1) ifm=2;
0 otherwise.

Therefore, n = 2 is the necessary condition for generating a nonzero geometric phase
under the assumption (3.3). With this condition, ¢2 — 2¢; = 2kx, for £ =0, £1,...
gives the largest phase shift and ¢o — 2¢y = (2k + 1)m/2, for & = 0,1, ..., gives
zero phase shift.

Next we formulate the optimal control problem for this particular mechan-
ical system. For convenience, we re-scale the coordinate  of S' by the factor

mel /(T +2mel?)?. Then the third equation of (3.1) becomes
0 = xldy — wii.

The optimal control problem is to find control u;(-) and uz(-) to

1
minimize / (w3 + ul)dt (3.6a)
(0}
subject to
&1 =1,
.',i:Q = Ug, (365)

9 = x%UZ - .’,E%’U,I,
with given boundary conditions
21(0) = #1(1) = 22(0) = z3(1} = 0, 0(0) = o, 6(1) =41 (3.6¢c)

Since the optimal control problem (3.6) has fixed boundary conditions, one
needs to check the reachability for the system (3.6b). Define two vector fields
on RZ x S by g1(q) = (1,0,22)7 and ga(g) = (0,1,—z%)T. Then (3.6b) can be
represented as

§ = g1(q)us + ga(q)ua-
It is easy to check that {g,[g:,g2]l(g) = (0,0,2)" and ¢1(q), 92(9), 91, [91, 9:]1(g)
are linearly independent for any g = (z1,%2,6) € R? x §%. By Chow’s theorem, we
conclude that, for the system (3.6b), there is an open set about the point ¢ = (0, 0,0)
(or any other point in R2 x S') such that any point in this set can be reached from

g by a piecewise constant input (uq,us).

Theorem 3.1 If (z1(-), z2{),8(-)) is an optimal trajectory with control

(ui(-),u2())
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for the optimal control problem (3.6), then there exisls
M) = ), 2200, 2(D”

on [0, 1] satisfying the ordinary differential equations

@ = uf, M = ~2Azz1u3,
g = ’U,;, ,-\2 = 2A3$QUT, {3.7&)
8 = xul — z2uf, Az =0, .
where :
ui(g) = -3 — Asx3) and ui(g) = 3(As+ Asz?), (3.70)

with boundary conditions
21(0) = z1(1) = 22(0) = 22(2) = 0, 8(0) =6y, 6(1) =61

Moreover, the system (3.7) is completely integrable.

Proof The equations (3.7) can be derived easily from variational principles.
The derivation is omitted here. We just prove the solvability. From (3.7) one can

get differential equations for the geodesics:
fL"l — Ag(ﬂ?l -+ Eg)i'z = 0,

Eo + Ag(zy + z2)E: = 0,
I3+ 2(33 — xl}fﬁl.’,i',‘z -+ /\3($1 + .’.Eg)(:l?ilzi‘l -+ $%$2) =),

(3.8)

for some constant As. To integrate (3.8), let w = z; + 2, and v = z1 —z2. We have
i = Ag’w’d},
W = —Ag’LU’t;‘.
By integrating the first equation and substituting the result in the second equation,
we get, for some constant c,
. Az o
W+ Agw(e + e ) =0,

which is the equation for a quartic oscillator, solvable by elliptic function, i.e.,

t*-'/ dw iy
T VO ot bwt

for @ = Asc/2, b = A%/8, where C) and C; are integral constants. Therefore, we
conclude that an optimal solution {(g(2), u(¢}) to (3.6) can be determined explicitly,
i.e., the boundary value problem (3.6) is solvable. !

4 AR e e
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4 Three Dimensional System

Starting from this section, we assume that the system is free to move in three
dimensional space. Again, we assume that the masses of the two oscillators are
equal, i.e., m; = ma. On the carrier a coordinate system 0O-zyz is set such that
the three axes are principal axes, i.e., the inertia tensor Iy of the carrier can be
represented as

Iy = diag{l;, Iy, I.).

Two oscillators are allowed to move on the carrier such that @ and € satisfy

Q1(t) = (z1(t) cos(p1), =1(t)sin(sh1), nt,
Qa(t) = (a(¢) cos(ta), za(t)sin(ya), —1)7,

where { > 0 and ¥ for ¢ = 1,2 are constants. This means that the two oscillators
are restricted to move along their guide ways which are parallel to the O-zy plane
and are at an equal distance (f) from the plane (see Figure 4.1). The configuration
space now becomes @ = R? x SO(3) which will be coordinatized by (1, z2, 4), and
the principal bundle is {R? x SO(3),R?, 50(3)). - .

Figare 4.1 A Rigid Body with Two Oscillators: 3D System
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By the above setting and condition g = 0, the angular velocity of the carrier

in (2.14) is of the form

Q= Wlmy, z2)d1 + a1, T2)da, (4.1)
where
w11 way
A 1 o 1
M= | wi2 Qo= ——— | W
det(Ilock) w3 deF(Ilock) wos

with det{fiockx) and wy; for i =1,2; j=1,2,3 are polynomials of z1 and 3. And,
the local connection form for the mechanical connection on (R% x SO(3), R?, SO(3))
is
W = —Ql(.’tl,&:z) d:,l',‘l —Qz(.’b‘l,:ﬂg) dwg. (4.2)
Although the above choice of parameters simplifies the bundle structure of the
system, the expression of the connection form is still very complicated. In the rest
of this section we will only consider some problems with special choices of ;.
An interesting question is how to choose the constant parameters so that the
above three dimensional system reduces to the planar system discussed in the pre-

ceding section. A natural guesé may be that
A
=) - (4.3)

But this is not enough. In fact, when (4.3) is satisfied, w13 and wos have simple
expressions:
wig = —was = 2& (I — Iym21% sin(29){z2 — 1)

Thus, if I =[ory =0or ¢ = §, wig =wes = 0, i.e., the rigid body will only
move (rotate) about the axis perpendicular to the plane formed by the guide ways
of two oscillators. Otherwise, in general, the parallel motion of the two oscillators
will cause the rigid body to drift about the z axis. In other words, when ) = g
holds, a sufficient condition for planar drift is that the carrier has axial symmetry
about z-axis, or that the two oscillators move along the lines which are parallel
with the same principal axis (0-z or 0-y) of the carrier.

Explicitly, if 1 = 0, i.e., both oscillators move parallel to orincipal axis 0-z, the
local connection form is

eml{dz1 — dz3) ' T

mele — 1)z2 + 262mayzg + em{e — 1)zf — 2emi? — I’ )

w=(0, —
If 4 = §, ie., both oscillators move parallel to principal axis 0-y, the local
connection form is
eml(dz) — dza) 0 O)T
me(e — )22 + 2e2mz xo + em{e — L)zl — 2eml2 — 1" 7 7

w=(

The nonzero terms in the above w’s are the same as w in (3.2} (up to the choice of

the coordinate system).
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From the above discussion, it is apparent that if one is interested in full three
dimensional motion of the carrier, some skewness in the directions of motion of the
oscillators would be necessary. In the following, we set ¢¥; = 0 and ¢ = % so that

h(t) = (z:(t), 0, 0T and Qa(t) = (0, z2(t), nr. {4.4)

We will show that the kinematic control system corresponding to (1.9) with g = 0

is controllable in a neighborhood of (0,0, A4) for any A € SO(3).
From (2.11) and (4.4) with g = 0, the kinematic control system is of the form

F1 = u1,

Eo = ug, (4.5)
A= A(ﬁlm + ﬁqu).

Let z = (51-31,.'1’,‘2) and ¢ = (z, A) be a point in Q. Equation (4.5) can be represented

as
g = X:i(q)u1 + Xa(q)ua, (4.5)

where X1(g) = ((1,0), A1 (z)) and Xa(q) = ((0,1), A ().

Again, we can use the rank condition in Chow’s theorem {4] to check the con-
trollability of the system. To this end, we need a formula to compute the Lie bracket
of vector fields X; and X, on R? x SO(3), where X; is represented as, in general,

Xi(z, &) = (Fi(z), AGi{z))  i=1,2 (4.6)
for smooth mappings F; : R? — R? and G; : R? — R3.
Proposition 4.1 Given two vector flelds X1 and Xo on R? x SO(3) shown
in (4.6), the Lie bracket of X1 and Xy is given by

JF. oI 8G. oG
(1, X0, A) = (2R = G B, A[Gr % Ga BQFL—FEFQ} ) @n

for any point (z, A) € B? x SO(3).

Proof Let R
¢;(7) = (x + TFi{z), Aexp(rGi(z)))

be an integral curve of X; at (z, A) for i = 1,2. Then,

(Fg(CE + TFl) — F}(I + ’,"'Fz),

d
dr
A exp(Tal)@g(x +rF) - Aexp('rég)él(m + 7))

: AF aF ~ P oG aa

= (—"EFl o A(Gle — GsGh + { =g - —('9_1‘F2j[ ))

[Xh XQ}("L') A) =

T=20

c‘% gFl 6Gs % el
( iR - S, [Gl X Gy + 2 F —5—1?2] )
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Theorem 4.2 For system (4.5), there is an open set about (0,0, A) for any
A € 50(3) such that any point in this set can be reached from (0,0, A) by a piecewise

constant input (u1,2).

Proof Let
X3(z, A) 2 [X1, Xol(z, A) = (Fs(x), ATs(z)),
Xy(z, 4) & (X, Xs)(z, A) = (Fa(z), ABa(z)),
Xs(z, A) 2 [ X3, Xs](z, 4) = (Fs(z), ACs(2)),

where F; and G;, ¢ = 1,2, 3 are computed by using (4.7) and (4.5)". It is easy to

see that
F; = (g) for ¢ = 3,4, 5.

Using Macsyma, one can check that, for @y and Q2 given in (4.4),
de't(G3:.G45G5)!a;:(G.D) 9{" 0.

‘Since Tz, 4)(R2% SO(3)) =~ R and the vector ficlds shown in (4.5)". which generate
the smallest involutive distribution, have special forms, namely Fi(z) = (1,0)T and
Fy(z) = (0,1)T, the above equations are sufficient to show that vector fields X; for

1,...,5 are independent. Consequently, the control system given in (4.5) is
: 1

1 =

controllable by Chow’s theorem.

We now turn to the optimal control problem. Corresponding to (P2) in Sec-
tion 1, the goal here is to find 1y {-) and us(-) to

1
minimize / (u? + u3) dt (4.8a)
0 . .
subject to
&1 =,
fiﬁg = Uy, (48b)

) A = A(ﬁlul + ﬁzﬂg),

for given boundary conditions
Ty (O} =] (I) = IQ(O) = .’Eg(l) = 0,
A(0) = Ag € SO(3), (4.8¢)
A1) = 4, € 50{3).

The necessary conditions for the above problem are given in the following theorem.

Theorem 4.3 If for the optimal control problem given by (4.8), (z(:), A(-))

is an optimal trajectory with controls (ui(-),us(-)) then there exist

() = () p2()) and A() on [0,1]
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satisfying the ordinary differential equations
' o, O,

o — T
Ty = u{, H1 = A (6371 u + o1 UZ)!
N ) oy . 80

A= A(Shu + Qaul), )
(B + Bad) A=A x (Qqu] + Qaug),

where
U;(:E,A,,LL, ’\) = _%(#§+ATQE)1 (4 Qb)
—U;(CL‘,A,].L, A) :_%(#2+ATQZ)a -
with boundary conditions
21(0) = 21 (1) = 2(0) = z5(}) =0,

(4.9¢c)
A(0) = Ay € SO(3), A(1) = A, € SO(3).

Proof Here, we first consider a slightly more general form of the problem

. (4.8). The optimal control problem now is to determine.a control {ua(ua{ N to

1
minimize f (w2 4 ud) dt (4.10a)
0
subject to
& = filz)uy + falz)ua,.
‘ fl(ﬁ) 1 fz(ﬁ) 2 (4.100)
' A = A(Q(z)ur + Qo (z)uz),
with boundary conditions
(2(0), A{0)) = (zo, Ao} and {z(1),A{}))= (#1, A1), (4.10¢)

where (z(£), A(t)) € R x SO(3),¥t € [0,1], fi : R? = R?, ;1 R? - R fori =1,2
and u(-) = (u1(-),u2(-)) : [0,1] — R? is a piecewise smooth function. Applying the
maximum principle to this problem, we have the following result.

Denoting by z = ((z, 4), (1, Aa)) = (=, A), (1, AN)) = ((z, A), (1, A)) & point
in T*(R? x SO(3)), we define the pseudo-Hamiltonian,

H:T*(R? x S0(3)) x R* - R,

by
A ~ —~
H(z,u) S (u,u) + (g, fi(w)us + falmue) + (A, A0 (2)us + Qa(2)uz))
= {u,u) + (i, Fr()ur + fa(@)uz) + (A Qi (w)ur + Qaua).
Here, we have used { -, ) to denote the real-valued pé,iring of a vector space and

its dual. Define Hamiltonian

H(z) & m%ﬂn H(z,u).
neER2
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Since the control space is unbounded, one can find functions u*(z) = (u] (2}, u3(2))
on T*(R? x SO(3)) with

uy(z) = _%(#ifl(x) + )\:Ql(ﬂ:))! (4.11)
uj(z) = —2{(p” falz) + X Qa(z)),
so that
2 .
H(z) = Hzw(2)) = =1 3 (. f2) + (0, Q)% (4.12)

From the maximum principle, we know that the existence of an optimal control for
problem (4.10) implies that there is a solution to the following system on T (R? x
SO(3)): ,
3= Xyl2) (4.13)
with
{(2(0)) = (%0, 40) and  7(2(1)) = (21, A1),

where Xy is the Hamiltonian vector field with respect to the Hamiltonian (4.12)
and 7 T*(R? % SO(3)) -5 R?'x°SO(3) is the canonical projection.’ Our goal now - -
is to determine the vector field Xz on T*(R® x SO(3)).

Recall that, for given n-dimensional smooth manifold Q, its cotangent bundle

T*() has a canonical symplectic form {2y ( [10]). Given a Hamiltonian H on T*Q,
the corresponding Hamiltonian vector field Xp on 1%} is defined by

Qo(Xp,Y) = H(Y) (4.14)

for any vector field Y € X(7T*Q). The local expression of (4.14) can be given as (cf.
Theorem 3.2.10 in [10])

w(mri a}((maa:ehﬁl)s (.CU, &, e?;ﬁ?)) = (ﬁ%ei) - (ﬁll 62> (415)

for (z,c) € T*@ and (e;,8) € TemyT"Q, % = 1,2. In our problem, @ = R? x
SO(3). For the Hamiltonian given in (4.12), the corresponding Hamiltonian vector
field Xz in (4.13) will be determined by (4.14).
Let
y(t) = (= + b, Ac'®), (u + 09, ASZ (X +¢5)))

be an integral curve on T*(R* x SO(3)) at
2= ((z, 4), (,u,AX)) for any v, ¢ € R%, o, F € R®.
Then its tangent vector at z is given by

Y(2) = ((z, 4), (11, AN), (v, 43), (4, A@ + B)).
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Now the right-hand-side of (4.14) can be calculated as

d

H(Y)=— tMOH (¥(?))
= —%j_t tzog(mm&,ﬁ(wtv» + (A8, Qule + t))?

= (§, fuut + fol) + (8, Ol + Opul)
+ (0, (Dfiul -+ Dfaug) - v) + (A, (DQu] + DQqusy) -v), (4.16)

where u is given in (4.11) and

Dfi= (58 %) and DO;=(5E 4)
for i =1,2 are 2 X 2 and 3 x 2 matrices, respectively.

On the other hand, let

Xu(z) = (2, A), (4, AN), (w, A8), (n, A(EX + 8)))
for some vectors w,n € R? and ¢, 6 € R3 which will be determined. Applying (4.15), .
we have

Qo(2)(Xa, Y) = (($, A@ + B)), (w, 48)) — (0, AEX +9)), (v, 43))
= (¢, w) — (n,v) + (B, ) — $tr([& 2] + 8)a. (4.17)

In order to have equation (4.14), we need to make (4.16) equal to (4.17). This leads
to following choice of w, €, and 8.
w = fiuy + faus,
n = —(Dfiu} + Dfaub)T p — (DQuut + DOul)T A, (418)
e = u] + Qaus,
8= A x (Qquy + Q2ud).

With the above equations, the vector field Xy can be completely determined.
In summary, the differential equation (4.13) now has the following form.

& = filz}ui + falz)u,

A =A@ (@)u; + Qala)uy), (4.190)
o= —(Dfi(x)ui + Dfalz)us)"p — (D (z)u] + DQ(z)us) ",

A= Ax (O (@)ul + Qa(z)ul),

where i T
uy =~ 5 (" A lz) + A (),

“ 4,196
uj = —1(u" fa(z) + AT Qa(z)). (4190

When f; = (1,007 and fo = (0,1)7, (4.19) leads to (4.9).
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Remark 4.4 From the proof of Theorem 4.3, we can see that the geometric
treatment of the optimal control problem allows us to define a Hamiltonian vector
field on the manifold 7*(R2 x SO(3)). The solution of the optimal control problem
will correspond to a trajectory of this vector field. Of course, in general, it is almost
impossible to find explicit solutions, although we did find one for the planar system
as shown in Section 3. However, as we will show in the next section, identification
of symmetries in such a Hamiltonian system will allow a reduction in the order of
the system by applying symplectic or Poisson reduction theory [11, 12]. O

5 Symmetry and Reduction

Recall that the manifold P = T*(R? x SO(3)), parameterized by
z = (x, A,,LL,AX),

is symplectic. Hence, it is also Poisson. One can verify that the Poisson bracket of
functions Fy and F, on P is given by
o U TaR oB oR, O
L F = e ==
{ 1 Z}P(z) Bx 8}1 Sz a‘u (51)
+(DaF, D 5 F2) — (DaFs, D 571}

In the preceding section we have shown that, for the Hamiltonian
2
H(Z) = _;l Z(#t -+ (A:‘Q‘i>)2= (52)

the Hamiltonian vector field is

K(2) = | X7 (o 1 9205) | (5.3)

A x (St + Qpub)

where

ui(2) = —4(u + AT, wi(e) = = § (2 + AT 0).

Consider an action of SO(3) on R? x SO(3) given by
& : 50(3) x (R? x SO(3)} — R? x §0(3),

(B,(z,A)) — {z, BA),
and its cotangent lift on 7*(R? x SO(3)},

87" SO(3) x T*{(R? x SO(3)) — T~(R? x SO(3)), |

(B, (2, A, 1, AN) 1 (2, BA, p, BAN).
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The quotient space P = T*(R2x S0(3))/50(3) ~ R2xR2xR® can be coordinatized
by % = (z, i, A). Let 7 be the canonical projection from P to P. We then have the

following theorem.

Theorem 5.1 The Hamiltonian system (P, {, }p, Xg) has SO(3) symmeiry
and is Poisson reducible. The Poisson reduced system is given by

5 K()VE, (5.4)

where A(Z) is the Poisson structure given by

~ 0 I 0
A(Z):(—I 0 9) (5.5)
0 0 X

for I denoting the 2 % 2 identity matriz and 0’s null matrices with sustable dimen-
sions, and H the reduced Hamiltonian given by Hom=H. In addition, the Casimir
Junctions of the Poisson reduced systemn are all real-valued smooth functions of || A
which is g first integral for the system, i.e., for some constent C,

IAI® = C1. (6.6)

Proof Tt is obvious that the Hamiltonian {5.2) is invariant under the action
@7 since it does not have A in its expression. This immediately implies the SO(3)-
symmetry for the system. Moreover, the reduced Hamiltonian H on T*(R? x

S0(3)}/50(3) is simply
H(z,p, M) = H(z, A, p, AN). (5.7)

Let f, and f; be smooth functions on P = T™(R? x SO(3))/SO(3). Let F; and
F; be lifted functions on P = T*(R? x SO(3)) such that

Fi(ﬂ:,A,ﬂ,AX):fi(I,H,)\), 231:2
We need to find the expression of {f, fa} 5 such that
{fl)f?}ﬁ(:c)#s /\) - {Fl, FQ}P(:E}AUU')AXL (58)

where {F1, Fy}p is given in (5.1). As we have seen in the proof of Theorem 4.3, a
tangent vector Y on T*(R? x SO(3)) at z = (z, A, u, A)) has the form

Y(2) = (v, AB,w, A(@X + ).,
where v,weR?and a,8 € R®. An integral curve of ¥ at z can be written as,

y{t) = (z + tv, Ae'®, p+ tw, AP (X +13)).
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Then by the definition of F; we have
, d - oo
dF;-Y(z) = -6E|t=gFi{a: +tu, Ae®, p + tw, 4™ (A + t8))

d
= pli=ofile +tv, pttw, A t3) (5.9)

_ Ok afi of;
=% YT Ve P

On the other hand _
(D 5 Fi, AGX + 8))

dF, Y (2) = %Fi vt (D, Ac) + 5
a;i oF, # ~ _ (510)
= —5"5 Y aju, sw A (DAFz — (DA’XFZ),\,AG!> + <DAX‘F1"':’ Aﬁ)
Comparing (5.9) with (5.10), we get
oF, 8f, OF _8f; af. 8f7,
8z  dr’ Ou  ou’ Dyshi=Agy, DaFi=Age) (5.11)

From (5.1), {5.8) and (5.11}, we have

{fz,f'z}ﬁ@:< %J:A A5f2> <Aaf2,\ A%’%)
ofi 8fs 8f2 Of

where I is 2 x 2 identity matrix. Therefore, the matrix in (5.5) is the reduced

Poisson structure. The proof of the rest of this Theorem can be easily carried out.
1

Remark 5.2 Since we are dealing with a trivial principal bundle here with
structure group as the symmetry group, after recognizing the coordinates for P one
should be able to find the Poisson rediced system by eliminating the third equation
of {4.9a) and determine the reduced Poisson structure from it. The first integral in

(5.6) follows also from the last equation of (4.9a). |

6 Approximation and Further Reduction

Up to now, we have made no simplifications or approximations of the optimal
control problem. It is customary to make ad hoc approximations in the interest of
ensuring analytic integrability or numerical solvability. However, in the process one
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can easily destroy symmetries inherent to the problem. This is highly undesirable.
On the other hand, in many physical systems, simplification and/or approximation
may bring symmetries to the system. Our purpose in this section is to impose
suitable assumptions, explore further symmetry and reduce the order of the system

again. A
As in Section 3, we assume that the distances of the point masses to 0-z axis,
z;, are very small in comparison with their distances to the zy plane, i.e.,

lz:]/1 < 1. (6.1)

By doing so, we ignore the higher order terms with
(ﬂ)z(f—%):r fori+j>2

in both numerators and denominators of 2;(z1,22) and Qy{z1,z3). In addition,
inspired by the symmetric heavy top, we posit one more important assumption.
We assume that the rigid body is symmetric about 0-z axis which implies

I =1, (6.2)

Under the above approximation and assumption, the angular velocity ) takes the

form:
0 a
Q= a Ty + 0 o, (63)
bzo —bx,
~where
a=— %emlzl(%mlz + 1),
b= %ezm(kmlz + 1) (2emi® — mi® + L),

A = I,(2emi? + I,)2.

The approximation of H is, for 7 = (z, &, ),
Hia(2) = —H{((BAsza + p1 + ado)® + (Bhamy — p2 — adi)?). (6.4)
Applying Hiz to (5.4), we get corresponding Poisson dynamics

7= MZ)VHis
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or, explicitly,

(. bhzza + 1+ aro
ry —— 5 3
b)\ga,f‘l -y — 0.)\1
Tz = 2 3
bzz\g.’ﬂ] - bA3,u.2 - Gb)\lx\g
M1 = 9 s
. __bgAg:Cg + bAgpy + abAz Az
= 2 ’ (6.5)

A = — 2(B®AgAazd + (bhapy — abA] + abA3)zs + b2 Mg ha?
+ (=bAgiuz — abA Ag)x1 — aAzp1 — a®AaAz),

Ay =1(6° A1 haa3 + (bAyp + @BA )2 + B2 A1 At
+ {(—bApuz + abA2 — abAi)z1 — adapz — a*MAz),

5 abiiAszs + ablodary — adopn + A1
3= :
. 2

Next, we show that the above system admits a symmetry group and the order
of the reduced Hamiltonian system can be finally brought down to 4. Consider a’
one-parameter group Gg =~ S' with each element having the form:

g- = Diag(Rot(7), Rot(7), Rot*(—7)), (6.6)

where

cos(t)  sin{T) 0)

_ ( cos(r)  sin(r) an ot*(r) =1 —sin(r T
ROt(T)W(—Sin(T) cos(r)) d Rot’(r) ( so() coso(} (1]

Define the action ¥ of G on P = T*(R? x SO(3))/50(3) = R" by

T: Gy xR >R, 6.7)
(7, (2,1, ) = (Rot(r)zz, Rot(r)ss, Rot?(—7) ). o

We then have the following striking fact.

Theorem 6.1 Following the rule of (6.7), the group Gy acts on the Poisson
manifold P canonically, i.e., for any g € G,

{fi,fo}po¥,, = {fio¥,,fa0% }5, Yf; € C®(P),Vg. € Go.
In addition, the approzimate Hamiltonian Hyy is Go-invariant, t.e.,

Hia(Z) = Hi2(¥y, (2)).
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Proof The first assertion is equivalent to
D‘I'.q'r (E)K(EI}D‘I;QT (E)T = K(wgr (E))'

This can be shown by a straightforward calculation. So is the second assertion.
O

Remark 6.2 From this theorem, one immediately concludes that Gp is a

symmetry group of the system (6.5). O

Recall that, given a Poisson manifold (M, {, }ar) and a function H on M, the
Hamiltonian vector field Xy is defined by

XylF)={F,H}u VF € C™(M). _ (6.8)
Let the group G act canonically on M by the action ® : Gx M — M. A momentum
map J : M — G* (the dual of Lie algebra of ) of this action is defined by
{J2),¢)=J(0)(=z) (6.9)
for all £ € G and z € M, where J : G — C°(M) is a linear map such that

KXy = Em- (6.10)

From (6.8)-{6.10), we see that the momentum map can be determined by the fol-

{F,J(€) = Ear(F]. (6.11)
The Hamiltonian version of Noether’s theorem states that if the Lie group, G, acting
canonically on the Poisson manifold M admits a momentum mapping J : M — G*

and H € C°°(M) is G-invariant, i.e.,
Ho®,=H or £y[H|=0 forall{eg,

lowing equation:

then J is a constant of the motion for H, i.e.,

JOQS::J,

where ¢, is the flow of Xg.
We now return to our problem. It is clear that by Theorem 6.1 conditions of

Noether’s theorem are satisfied and, consequently, the admitted momentum map
will be an integral of the reduced system (6.5). Indeed, we have the following

theorem.

Theorem 6.3 The constant momentum map for the system (P, {, } B) cor-
responding to the action ¥ of Gy on P is

. J(f)(%’} = —XIiji2 + Tl -+ }\3. (612)
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Proof We will determine a function J{£) which satisfies
(RO s =650,  VfEC™(P), Y€ b

From {6.7) we know that £ € Gy is of the form

0 =1 0
. 0 1 6 1
£ = €' Diag ( ),( ), 1 0 0 ,
( “L 0L 00 0 0

where £ is any constant in R which will later be chosen to be 1. It is easy to show
that the infinitesimal generator of £ is given by

\Il(exp(.{'r), E) = (3723 =T, [2, 1, —Az, At O)T'
T=0

d
5ﬁ(3) = ir

Then, for any smooth function f on ﬁ

e O 8f 8f of ., of , Of
fp(f)(z}—maxl :131'5,E 4 b 5# ”lauz A28A1+A16A 6A3 {(6.13)

On the other hand let J(€) be a function on M, then

{f,J(tE ’) ~(HTABAOE
_9J€) 8f | 8J(&) 8f _9J() 0f  BI(E) Of
6,&1 3$1 8}.!,2 6.’[}2 6331 8#1 8582 5#2

8J(£) aJ(&), of 5J(€) 8J(€), 8f
a3, e, o, TR, + 055,
8J () ), of
e M, o
(6.14)
Comparing (6.13) and (6.14), we have the following PDE
0J&) _ .
O~ WO 8
8JE) _ one T O »
Bz aJ(E) , , 8J(E)
aJe) M, TMe, T
doy LO 0
aJE) >oM Az )
\ B 632 = THL

One can check that
J(E)(Z) = —z1pa + Tapn + X
is a solution of the above PDE. Therefore, from Noether’s theorem, this function

is a constant of motion of Xy ,, ie,
—zypg + Tapn + Az = O (6.15)

for some constant Cs. O
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Since the reduced system has Gy-symmetry, by using the standard Poisson
reduction procedure again, we can drop the system (6.5) to the quotient space
P2 P/Gy ~ TR x 8O(3))/50(3)/8! with projection 7 : P — P. In the
following, we will find an induced Hamiltonian H;y, an induced Poisson structure
A and a reduced Hamiltonian vector field Xz , on the manifold P. First, consider

a change of coordinates

W P>P

. . (6.16a)

7 = (1, T2, f11, 2. A1, Az, Ag) = 2 = (11,72, 73,61, 02,85, Aa)
given by relations

x1 = rycos(édy),

! 1 cos() A1 = 3 cos(f3),
A2 = —r3sin(ds), (6.168)
Az = Az,

Tn ="M Sin(@l),
1 = 13 cos(fa),

M2 = T3 Sil’i(ﬁg),
With these new coordinates, the Hamiltonian H; becomes

H’m(zf) :%(2&7‘2?‘3 sin(93 — 92) -+ 2abAgrirs 005(93 — 6'1) (6 17)

+ 2bAgry o sin(fg — 91) = 32"'% - 7‘% o bg’\%‘"f .

And the corresponding dynamics X g, is given by

( P sin(f3 — 61) — ra cos{fly — 61)
1— 3
2
G, —_ 9T cos(fs — 1) + rasin(fs — 61) — bAgry
1 — 2?'1 1
. abAzra cos(f3 — 82) — b*A3ry cos(fs — 6;)
Ty = — 9 '
.- 1 )
J By = — %(ab,\grg sin(fz — #) 1 b2A2r) sin(fz — 61) — bAgra), (6.18)
5 2Tz cos(f3 — B3) — abAZry sin(63 — 6;)
3= )
2
. 1
f3 = — 273“(&)\3?"2 sin(f3 — 85) + (abAZry — abri73) cos(fy — 61)
- b’f’l’I‘Q’I'g Sill(gg - 91) -+ (b2A3'J"% — 012)\3)’1”3),
A ' arara 005(93 et 92) — ab/\3r11"3 Sifl(gg - 91)
3 == .
2

“

Observing that the Hamiltonian H’;2 in (6.17) and the right-hand-side of differen-
tial equation (6.18) depend on relative values of 8), 2 and & only, we can reduce

the order of this system as follows. Let

921292—"31 and 932333_92'
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By using Z = (r,72, 73,01, 032, A} to parameterize P, the induced Hamiltonian
on P is given by

Elg(f) :% (20,5)\37‘1’1"3 805(932 -+ 921) + 2arsry sin(ng) (6 19)
+ 2bAg7ira sin(fay) — alri — v — B2A%rD). .

The corresponding induced dynamics Xg . on P is given by

( 0 sin{faz -+ fa1) — r2 cos{fa1)
1= )
2
; abAarz cos(fsz) — B2A%r; cos(f:)
2 = = 3
2
by = - abA2ry sin(fsn + 021) — adsrs cos(fan)
2 3
9.21 = (aTzTg 008(932 + 921) — abAngﬂ"g Sin(932)
g (6.20)
+ (5 — B°A3r]) sin(82)),
, 1 )
B3 =2—((abr1r2'r§ — abMirirs) cos(f3p + Ba1)
273
f_(ab)\gr‘g — aAar2) sin{fs2) + {brirs + bz)\gri)'rg sin(fa )
+ (((12 — b)/\g — b2/\3ﬂ”%)7‘2?‘3),
i abAgrirs Sin(932 + 921} — araTs 008{932)
3 = -
\ 2
Moreover the first integrals in (5.6) and (6.15) now take the form:
i+ A3 =0 (6.21)
and
riro sin(t?zl) -+ /\3 = Cz. (622)

Therefore, as we claimed before, the final reduced system with the above integrals
is a four-dimensiona! Hamiltonian system.

Remark 6.4 One can further show that the final reduced system (6.20) with
(6.21) and (6.22) is also Poisson. Indeed, the equations in (6.20) can be written as

where ‘
0 cos(fz) 0 _M sin(fa)
2
—cos(0z1) 0 0 sin() G 0
A(3 0 o o0 G X
Ao =1 ) o) g 0 costoa)
_ sin{fa;) 61 0 __cos(fz1) Tﬁz 0
0’ o -2 §® o o0

For a detailed derivation of the above expression, see {13]. O0
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7 Final Remarks

The model problem described in this paper is strongly motivated by a trouble-
some phenomenon of drift observed in the Hubble Space Telescope due to thermo-
elastically driven vibrations of the solar panels arising from the day-night thermal
cycling on-orbit. The point mass oscillators in our problem may be viewed as
one-mode truncations of this elasto-mechanical problem.

It should be noted that in Section 4 and 5, the whole analysis does not depend
on the contents of the vectors Q) and {23 and the dimension of the shape space
is not important either. Therefore, the analysis in that part can be extended to
systems with bundle structure (R™ x SO{3), R™, SO(3)), with m > 1.
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Preface

This volume collects the proceedings of a workshop which was held on June
12, 1992 both as a commemoration of the 25th anniversary of the publication of
“Foundations of Mechanics” by Ralph Abraham and Jerrold Marsden and as a
celebration of Jerry’s 50th birthday. The publication of that first edition marked a
period of remarkable resurgence in all aspects of mechanics, which has continued,
through the publication of the second edition in 1978, deeply nourished by contacts
with a variety of areas of mathematics including toplogy, differential geometry, Lie
theory, and partial differential equations to name a few. The papers collected in
this volume reflect these fruitful ties as well as some others, strengthened over the
last two decades, with areas of applied science including control theory.

Jerry Marsden has been involved centrally in many of these developments,
through his wide-ranging insights, through his intense collaborations, through his
tireless teaching and scholarship, and his creation of new directions of ressarch that
have attracted energetic contributions from around the world. Through his personal
and intellectual generosity, Jerry Marsden has shaped the subject of geometric
mechanics in lasting ways and has been a source of inspiration to us and countless

others.

" Tt is with great pleasure that we as editors dedicate this volume to Jerry as a
delayed birthday present.
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