
 
The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE’s peer review process under the supervision of the 
session organizer. This process requires a minimum of three (3) reviews by industry experts. 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. 
ISSN 0148-7191 
Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely responsible for the content of 
the paper. 
SAE Customer Service:    Tel: 877-606-7323 (inside USA and Canada) 
                                           Tel: 724-776-4970 (outside USA) 
                                           Fax: 724-776-0790 
                                           Email: CustomerService@sae.org 
SAE Web Address:           http://www.sae.org 

Printed in USA 

2009-01-0201 

Design Optimization with Imprecise Random Variables 

Jeffrey W. Herrmann 
University of Maryland, College Park 

Copyright © 2009 SAE International

ABSTRACT 

Design optimization is an important engineering design 
activity.  Performing design optimization in the presence 
of uncertainty has been an active area of research.  The 
approaches used require modeling the random variables 
using precise probability distributions or representing 
uncertain quantities as fuzzy sets.  This work, however, 
considers problems in which the random variables are 
described with imprecise probability distributions, which 
are highly relevant when there is limited information 
about the distribution of a random variable.  In particular, 
this paper formulates the imprecise probability design 
optimization problem and presents an approach for 
solving it.  We present examples for illustrating the 
approach. 

INTRODUCTION 

Design optimization is an important engineering design 
activity in automotive, aerospace, and other 
development processes.  In general, design optimization 
determines values for design variables such that an 
objective function is optimized while performance and 
other constraints are satisfied [1, 2, 3].  The use of 
design optimization in engineering design continues to 
increase, driven by more powerful software packages 
and the formulation of new design optimization problems 
motivated by the decision-based design (DBD) 
framework [4, 5] and the corresponding idea of design 
for market systems [6]. 

Because many engineering problems must be solved in 
the presence of uncertainty, developing approaches for 
solving design optimization problems that have uncertain 
variables has been an active area of research.  The 
approaches used require modeling the random variables 

using precise probability distributions or representing 
uncertain quantities as fuzzy sets.  Haldar and 
Mahadevan [7] give a general introduction to reliability-
based design optimization, and many different solution 
techniques have been developed [8, 9, 10].  Other 
approaches include evidence-based design optimization 
[11], possibility-based design optimization [12], and 
approaches that combine possibilities and probabilities 
[13].  Zhou and Mourelatos [11] discussed an evidence 
theory-based design optimization (EBDO) problem.  
They used a hybrid approach that first solves a RBDO to 
get close to the optimal solution and then generates 
response surfaces for the active constraints and uses a 
derivative-free optimizer to find a solution. 

The amount of information available and the outlook of 
the decision-maker (design engineer) determines the 
appropriateness of different models of uncertainty.  No 
single model should be considered universally valid.  In 
this paper, we consider situations in which there is 
insufficient information about the random variables to 
model them with precise probability distributions.  
Instead, imprecise probability distributions (described in 
more detail below) are used to capture the limited 
information or knowledge.  In the extreme case, the 
imprecise probability distribution may be a simple 
interval.  This paper presents an approach for solving 
design optimization problems in which the random 
variables are described with imprecise probability 
distributions because there exists limited information 
about the uncertainties.   

IMPRECISE PROBABILITIES  

In traditional probability theory, the probability of an 
event is defined by a single number between in the 
range [0, 1].  However, because this may be 
inappropriate in cases of incomplete or conflicting 



 

information, researchers have proposed theories of 
imprecise probabilities.  For these situations, 
probabilities can be intervals or sets, rather than precise 
numbers [14, 15, 16].  The theory of imprecise 
probabilities, formalized by Walley [15], uses the same 
fundamental notion of rationality as the work of de Finetti 
[17, 18].  However, the theory allows a range of 
indeterminacy—prices at which a decision-maker will not 
enter a gamble as either a buyer or a seller.  These in 
turn correspond to ranges of probabilities.   

Imprecise probabilities have previously been considered 
in reliability analysis [19, 20, 21] and engineering design 
[22, 23, 24]. Aughenbaugh and Herrmann [25, 26, 27] 
have compared techniques using imprecise probabilities 
to other statistical approaches for making reliability-
based design decisions.  The work described in this 
paper builds upon these previous results. 

In many engineering applications, the relevant random 
variables (e.g., parameters or manufacturing errors) are 
continuous variables.  One common way to represent 
the imprecision in the probability distribution of such a 
random variable is a probability box (“p-box”) that is a 
set of cumulative probability distributions bounded by an 
upper distribution F  and a lower distribution F . These 
bounds model the epistemic uncertainty about the 
probability distribution for the random variable. Of 
course, a traditional precise probability distribution is a 
special case of a p-box, in which the upper and lower 
bounds are equal.   

There are multiple ways to construct a p-box for a 
random variable [28].  In some cases, the type of 
distribution is known (or assumed) but its parameters 
are imprecise (such as an interval for a mean).  In other 
cases, the distribution is constructed from sample data.  
Additionally, one can create a p-box from a Dempster-
Shafer structure, in which intervals (not points) within the 
range of the random variable are assigned probabilities.  
For more about p-boxes and the link between p-box 
representation and Dempster-Shafer structures, see 
Ferson et al. [29].   

Functions of random variables that have imprecise 
probability distributions also have imprecise probability 
distributions.  Methods exist for calculating these 
convolutions [30, 31, 32, 33].  Wang [34] proposes a 
new interval arithmetic that could be used as well. 

Therefore, p-boxes are a very general way to represent 
uncertainty.  For computational purposes, in the 
approach below, we will convert a p-box into a 
“canonical” Dempster-Shafer structure [28], which will 
necessarily be bounded. 

DESIGN OPTIMIZATION WITH IMPRECISE 
PROBABILITIES 

In the imprecise probability design optimization (IPDO) 
problem, there is a set of deterministic design variables 
for which the designer chooses values and a set of 
random variables, which may be manufacturing errors, 
uncertain engineering parameters, or other sources of 
uncertainty.  Unlike other work, this formulation does not 
include in the model “random design variables.”  Such 
variables are typically those in which the designer 
chooses the mean, but the actual value is random.  In 
the IPDO formulation presented here, each such 
quantity is modeled with two quantities: a deterministic 
design variable and a random parameter that represents 
the error of that variable.  This does not limit the scope 
of the model.  For instance, suppose we have a “random 
design variable” X that is a dimension of a part.  The 
mean of X, denoted Xμ , is chosen by the designer, but 
the dimension is a normally distributed random variable 
with a standard deviation of σ .  Examples of this type of 
variable have been considered in Zhou and Mourelatos 
[12] and elsewhere.  In this formulation, we replace the 
variable X with X XX d Z= + , where the first term, which 
corresponds to the mean, is a deterministic design 
variable, and the second term is a random variable that 
is normally distributed with a mean of 0 and a standard 
deviation of σ .   

The general IPDO is formulated as follows: 

( )

( ){ }
min ,

s.t.  , 0   1, ,i i

L U

V f

P g p i n

⎡ ⎤⎣ ⎦

≤ ≤ =

≤ ≤

…
d

d Z

d Z

d d d

 (1) 

In this formulation, kR∈d  is the vector of deterministic 
design variables, and rR∈Z  is the vector of random 
variables that have imprecise probability distributions.  
The probabilistic constraints are functions of the 
deterministic design variables and the random variables.  
We want ( ), 0ig ≥d Z  (which is the “safe region”) but will 
be satisfied if the upper bound on the failure probability 
is less than the target ip .  We choose the upper 
probability in order to be conservative.   

The function f is the system performance, which may be 
random, in which case the function V is a moment of that 
random performance, such as the upper limit for the 
mean; thus V is a deterministic function of d .  In many 
cases, the objective is specified as a function of only the 
deterministic design variables, in which case we get the 
following formulation: 
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First, this formulation has the usual difficulty of 
computing the failure probability for each constraint.  
Analytically evaluating the failure probability is possible 
only in special cases.  An additional complication is the 
imprecision of the random variables, which makes 
applying standard RBDO techniques difficult.    

Now, Z  has an imprecise joint probability distribution, 
which can be considered as a set H of precise joint 
probability distributions.  For any precise joint probability 
distribution jF H∈ , let ( ){ }, 0j iP g ≤d Z  be the 
probability of violating constraint i when Z has that 
precise joint probability distribution.  Then, we could 
reformulate the IPDO as the following RBDO: 

( )

( ){ }
min

s.t.  , 0   1, , ,  j i i j

L U

f

P g p i n F H≤ ≤ = ∈

≤ ≤

…
d

d

d Z

d d d

 (3) 

Unfortunately, because of the large number of 
constraints, this reformulation is not helpful unless the 
set H is limited to a reasonable number of “extreme” 
distributions that can be used as surrogates for the 
entire set.  Research on this topic is ongoing and may 
provide a way to increase the computational efficiency of 
IPDO in the future. 

Due to these difficulties, we will pursue a numerical 
approach.  To do this, we will first partition the 
constraints ( ), 0ig ≥d Z  into two sets.  Set 1S  includes 
any constraint that can be rearranged so that 

( ) ( ) ( )( ),i i i ig a h b= −d Z Z d , where ia  is a positive 

scalar.  Note ( ), 0ig ≤d Z  if and only if ( ) ( )i ih b≤Z d .  
The constraints that cannot be rearranged in this way 
are placed in set 2S .   

For each constraint in 1S , we will perform the 
convolution needed to get the imprecise distribution of 
( )ih Z  by combining the Dempster-Shafer structures for 

the relevant random variables.  Because the upper 
cumulative probability distribution will be a discontinuous 
function, we will approximate it with 

( ) ( ){ }i iF x P h x≈ ≤Z .  Therefore, we can replace each 

of the constraints in 1S  by ( )( )i i iF b p≤d . 

SOLUTION APPROACH 

To solve the IPDO, we will use a sequential approach 
similar to that of Du and Chen [35] and Zhou and 
Mourelatos [12]. 

A key part of the approach is to solve the following 
deterministic optimization problem P given values for the 
random variables in each constraint in 2S .  Let ( )i kZ  be 
specific values for the random variables in constraint 

2i S∈  in iteration k. 

( )

( )( )
( )

1

2

min

s.t.    

 , 0  

i i i

i(k)
i

L U

f

F b p i S

g i S

≤ ∈

≥ ∈

≤ ≤

d
d

d

d Z

d d d

  (4) 

In the space of the design variables, the ( ), 0i(k)
ig ≥d Z  

constraints move the boundaries of the “safe region” (by 
making it smaller) in order to reduce the probability of 
failure.  However, it is still necessary to determine the 
probability of failure and compare it to the target.  If it is 
too large, then we have to move that constraint some 
more. 

Given these preliminaries, the complete approach 
follows: 

1. Let 0k = .  For 2i S∈ , let each component of ( )i kZ  
equal a value within the range of its expected value.   

2. Solve P to get the solution ( 1)k+d . 

3. For 2i S∈ , evaluate ( ){ }( 1) , 0k
iP g + ≤d Z .  If 

( ){ }( 1) , 0k
i iP g p+ ≤ ≤d Z  for all 2i S∈ , then the design 

point is feasible; stop.  Otherwise, for all constraints 

2i S∈  where ( ){ }( 1) , 0k
i iP g p+ ≤ ≤d Z , set ( 1) ( )i k i k+ =Z Z .  

For the others, find ( 1)i k+Z  by solving the following 
problem: 

( )
( ) ( ){ }

( 1)

( 1) ( 1)

( 1) ( 1) ( 1)

min ,

s.t.  , ,

i k

k i k
i

k k i k
i i i

g

P g g p

+

+ +

+ + +≤ =

Z
d Z

d Z d Z
 (5) 

This yields a “very bad” (but not worst-case) value of 
those random variables used in that constraint.  (A 
technique for solving this problem is described below.) 

4. 1k k= + .  Repeat steps 2 and 3 until a feasible design 
point is found. 



 

At this point we have no proof that the algorithm will 
converge, and the approach may fail on problems with 
irregular objective functions and constraints.  Further 
analysis and experimentation is needed to study this 
aspect of the method. 

We use the following reliability analysis technique to 
determine if ( ){ }( 1) , 0k

i iP g p+ ≤ ≤d Z  and to find ( 1)i k+Z .  

This reliability analysis technique corresponds roughly to 
solving the inverse “most probable point” problem [35] or 
finding the “shifting vector” [12].  Given ( 1)k+d , set 

0fp =   Without loss of generality, we assume that 

( )( 1) ,k
ig +d Z  is a function of m random variables 

1, , mZ Z… .  The Dempster-Shafer structure of iZ  is 
represented by in  equally likely intervals.  Let 

1 2 mN n n n= " .  Let *
iN p N= ⎢ ⎥⎣ ⎦  be the number of values 

and intervals to save.  Consider each of the N 
combinations of intervals for the random variables.  For 
each combination, let each random variable range over 
its interval and find min

ig , the minimum of ( )( 1) ,k
ig +d Z  

for that combination.  If min 0ig ≤ , add 1
N  (the probability 

of that combination) to fp .  As the N combinations of 

intervals are checked, keep the *N  smallest minima 
found along with the values of 1, , mZ Z…  that yield those 
minima.  The final value of fp  is used to estimate 

( ){ }( 1) , 0k
iP g + ≤d Z .  We set ( 1)i k+Z  equal to the values 

of 1, , mZ Z…  that yield the largest of the *N  smallest 
minima found.   

EXAMPLES 

This section presents three examples to illustrate the 
IPDO solution method.  The first example has two 
design variables and three random variables: 

 

( ) ( ){ }

1 2

3
1

2
1 1 2 2

min

4s.t.  0 0.02

20 0 0.02

L U

d d

P z
d

P d z d z

+

⎧ ⎫
− ≤ ≤⎨ ⎬

⎩ ⎭

+ + − ≤ ≤

≤ ≤

d

d d d

 (6) 

The bounds ( )0.01,0.01L =d  and ( )10,10U =d .  Note 
that the first constraint is in set 1S , whereas the second 
one is in set 2S . 

All three random variables have imprecise probability 
distributions.  The random errors 1z  and 2z  have the 
same distribution, each characterized by the intervals 

( ) ( )1 1.5 1 / 99, 0.5 1.5 1 / 99k k− + − − + −⎡ ⎤⎣ ⎦ , for 1, ,100k = …  
(each interval has a probability of 0.01).  Therefore, they 
can range from -1 to 1.  The distribution of random 
parameter 3z  is characterized by the intervals 

( ) ( )1 0.5 1 / 99,1.5 0.5 1 / 99k k+ − + −⎡ ⎤⎣ ⎦ , for 1, ,100k = …  
(each interval has a probability of 0.01).  This random 
parameter ranges from 1 to 2. 

For 3z , we will approximate its upper cumulative 
probability as follows: 

{ } ( )3

0 if 1
2 -1  if 1 1.5

1 if 1.5

x
P z x x x

x

<⎧
⎪≤ = ≤ ≤⎨
⎪ >⎩

 (7) 

The IPDO solution approach begins with 1z  and 2z  both 

set to zero; that is, 2(0) (0,0)=Z : 

 

1 2

3
1

2
1 2

min

4s.t.  0 0.02

20
L U

d d

P z
d

d d

+

⎧ ⎫
− ≤ ≤⎨ ⎬

⎩ ⎭

≥

≤ ≤

d

d d d

 (8) 

This yields ( )*(1) 3.9604,1.2751=d , but the upper 
probability of violating the second constraint is too high.  
Our reliability analysis technique estimates that 

( ) ( ){ }2*(1) *(1)
1 21 220 0 0.7830P d z d z− + + ≤ = .  Because 

there are 210,000 100=  combinations of intervals, we 
keep the worst 200 interval lower bounds.  

( ) ( )2(1) 2(1)
1 2, 0.5303, 0.9697z z = − −  gives the best of these 

worst.  (The first superscript refers to the second 
constraint, the second to the iteration number.) 

Now we solve by adding the shifting vector to the 
second constraint: 

 

( ) ( )

1 2

3
1

2
1 2

min

4s.t.  0 0.02

0.5303 0.9697 20
L U

d d

P z
d

d d

+

⎧ ⎫
− ≤ ≤⎨ ⎬

⎩ ⎭

− − ≥

≤ ≤

d

d d d

 (9) 

This yields ( )*(2) 3.9604, 2.6696=d .  Our reliability 
analysis technique estimates that 

( ) ( ){ }2*(2) *(2)
1 21 220 0 0.0655P d z d z− + + ≤ = .  Thus, the 

upper probability of violating the second constraint is 



 

lower but still too high.  We also determine that 

( ) ( )2(2) 2(2)
1 2, 0.7727, 0.9545z z = − −  gives the best of the 

worst for this design point.   

Now we solve with the new shifting vector: 

 

( ) ( )

1 2

3
1

2
1 2

min

4s.t.  0 0.02

0.7727 0.9545 20
L U

d d

P z
d

d d

+

⎧ ⎫
− ≤ ≤⎨ ⎬

⎩ ⎭

− − ≥

≤ ≤

d

d d d

 (10) 

This yields ( )*(3) 4.1927,2.6645=d .  The first constraint is 
not active, but the upper probability of violating the 
second constraint is now acceptable.  Our reliability 
analysis technique estimates that 

( ) ( ){ }2*(3) *(3)
1 21 220 0 0.0194P d z d z− + + ≤ = .  So the 

solution is feasible, and the algorithm stops. 

The second example is the mathematical example from 
Zhou and Mourelatos [12].  In our version, the problem 
has two design variables ( )1 2,d d=d  and two random 

variables, the error for each one: ( )1 2,z z=Z .  The 
bounds are 0 10id≤ ≤  for both design variables.  The 
objective is to minimize the sum of the design variables.  
In the terms of our general IPDO, we have the following 
relationships: 

 

( )
( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( )

1 2
2

1 1 1 2 2
2

2 1 1 2 2
2

1 1 2 2
2

3 1 1 2 2

, 20

, 4 5

12 120

, 75 8

f d d

g d z d z

g d z d z

d z d z

g d z d z

= +

= + + −

= + + + −

+ + − − − −

= − + − +

d

d Z

d Z

d Z

 (11) 

Both random variables have the same imprecise 
probability distribution, which is characterized by the 
intervals ( ) ( )1 1.5 1 / 99, 0.5 1.5 1 / 99k k− + − − + −⎡ ⎤⎣ ⎦ , for 

1, ,100k = …  (each interval has a probability of 0.01).  
Therefore, they can range from -1 to 1.   

We cannot separate any of the constraints, so 1S = ∅  
and { }2 1,2,3S = .  The two random variables have the 
same imprecise probability distribution, which is 
approximately an imprecise uniform distribution with a 
lower bound in the range [-1, 0.5] and the upper bound 
in the range [0.5, 1].  Figure 1 shows the actual p-box. 

 

Figure 1.  The p-box for 1z  (and 2z ). 

First, we will solve the deterministic optimization problem 
with both random variables replaced by 0.  We get 

( )3.1139,2.0626=d , the same optimal solution as Zhou 
and Mourelatos [12].  The objective function value is 
5.1765.   

Next, we let ( )(0) 0,0i =Z  for all 2i S∈  and solve problem 

P.  This yields the solution ( )(1) 3.1139,2.0626=d .  

( ){ }(1) , 0iP g ≤d Z  is greater than 0.02 for the first two 

constraints but equals zero for the third constraint. 

When evaluating this probability, we have to compare 
10,000 combinations, in which each combination has an 
interval from the p-box for 1z  and an interval from the p-
box for 2z .  For each combination, we must find the 
minimal value of ig  over those values of 1z  and 2z .  
Based on the mathematical analysis of the constraints, it 
is possible to develop simple rules to identify the values 
of 1z  and 2z  that give the minimum for that combination.   

Let min max
1 1,z z⎡ ⎤

⎣ ⎦  and min max
2 2,z z⎡ ⎤

⎣ ⎦  be the intervals that 

form the combination.  For the first constraint, the 
minimum is found at min

2 2z z= , and 1z  is either an 
endpoint of the interval or 1d− .  For the second 
constraint, the minimum is found at one of the following 
five points: ( )min min

1 2,z z , ( )min min
1 2 2 26.4 0.6 0.6 ,d d z z− − − , 

( )max min
1 2,z z , ( )max max

1 1 2 1,1.6 0.6 0.6z d d z− − − , or 

( )max max
1 2,z z .  For third constraint, the minimum is found 

at max
2 2z z= , and 1z  is one of the endpoints of its 

interval. 



 

From this algorithm we set ( ) ( )1(1) 1(1)
1 2, 0.7121, 1z z = − −  and 

( ) ( )2(1) 2(1)
1 2, 0.8939, 0.8182z z = − .  We will use these two 

vectors in the first two constraints as we try to find a 
feasible solution in the next iteration.  For the third 
constraint, which was already feasible, we let 

( ) ( )3(1) 3(1)
1 2, 0,0z z = . 

The second iteration of the problem yields the solution 
( )(2) 3.5836,3.4255=d .  At this point, the objective 

function equals 7.0091.  ( ){ }(1) , 0iP g ≤d Z  is again 

greater than 0.02 for the first two constraints but equals 
zero for the third constraint.  We set 

( ) ( )1(2) 1(2)
1 2, 1, 0.5909z z = − −  and ( ) ( )2(2) 2(2)

1 2, 0.3939, 1z z = − . 

For the third constraint, ( ) ( )3(2) 3(2)
1 2, 0,0z z = . 

The third iteration of the problem yields the solution 
( )(3) 3.6113,3.5240=d .  At this point, the objective 

function equals 7.1353.  ( ){ }(1) , 0iP g ≤d Z  is less than 

0.02 for the first two constraints and equals zero for the 
third constraint, so the solution is feasible. 

The third example that we consider is the optimization of 
a thin-walled pressure vessel.  Our formulation is based 
on the RBDO formulation of Zhou and Mourelatos [11].  
The problem was originally introduced by Lewis and 
Mistree [36].  The problem has three design variables: 
the radius R, the mid-section length L, and the wall 
thickness t.  The objective is to maximize the volume of 
the pressure vessel.  Five constraints ensure that the 
design is strong enough to resist the internal pressure 
(with a safety factor of 2) and meets geometric 
requirements.  

In our formulation there are three random variables: the 
manufacturing error of the radius ( 1z ), the internal 
pressure P, and the material yielding strength Y. 

In the terms of our general IPDO, we have ( ), ,R L td =  

and ( )1, ,z P Y=Z  and the following relationships: 

( )
( ) ( )
( ) ( )( )

( ) ( )( )
( ) ( )( )
( ) ( )
( )

3 24
3

1
1 1 2

2
2 1
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1 1

3 1
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5 1

, 2 2

, 2

2 2 2

, 60 2 2

, 12

, 5

f R R L

g tY P R z t

g R z t t Y

P R z R z t t

g L R z t

g R z t

g R z t

π π= +

= − + +

= + +

− + + + +

= − + + +

= − + +

= + −

d

d Z

d Z

d Z

d Z

d Z

 (12) 

We set 0.02ip =  for 1, ,5i = … .  The bounds on the 
design variables are the following ranges: 5 24R≤ ≤ , 
10 48L≤ ≤ , and 0.25 2t≤ ≤ .  The last three constraints, 
which form set { }1 3, 4,5S = , can be rearranged as 
follows: 

( ) ( )( )
( )( )

( ) ( ) ( )
( ) ( ) ( )

3 3 1 3

1
1 2

4 4 1 4 1

5 5 1 5 1

, 2 ( )

2 30

, ( ) 12

, ( ) 5

g h z b

z L R t

g h z b z R t

g h z b z t R

= −

= − − + + −

= − = − − + −

= − = − −

d Z d

d Z d

d Z d

 (13) 

Therefore, { }2 1, 2S = .  Each of the three random 
variables has an imprecise probability distribution.  The 
imprecise probability distribution of the internal pressure 
P is approximately an imprecise normal distribution.  The 
imprecise mean has a range of [975, 1025].  The 
standard deviation is precisely 50.  The imprecise 
probability distribution of the material yielding strength Y 
is also approximately an imprecise normal distribution.  
The imprecise mean has a range of [253500, 266500].  
The standard deviation is precisely 13000.   

The actual p-boxes used for these two random variables 
are constructed as follows: for 1, ,100k = … , let 

( )2 1 / 200kf k= − , which therefore ranges from 0.005 to 
0.995.  The k-th interval in the p-box for the internal 
pressure P is ( ) ( )1 1975 50 ,1025 50k kf f− −⎡ ⎤+ Φ + Φ⎣ ⎦ , and 

the k-th interval in the p-box for the material yielding 
strength Y is 

( ) ( )1 1253500 13000 ,266500 13000k kf f− −⎡ ⎤+ Φ + Φ⎣ ⎦ . 

The imprecise probability distribution of 1z , the 
manufacturing error of the radius, is based on data given 
by Zhou and Mourelatos [11], who assume that we have 
100 sample points for the error, but the data are given 
only in bins as follows: 3 points are in the range [-4.5, -
3], 45 points are in the range [-3, 0], 49 points are in the 
range [0, 3], 2 points are in the range [3, 4.5], and 1 
point is in the range [4.5, 6].  Figure 2 shows the 
corresponding p-box for 1z  and the curve we use for 
approximating the upper bound of this p-box.  An 
approximation is created for each part of the p-box.  For 

,L Ux z z⎡ ⎤∈ ⎣ ⎦  where the lower left corner of the upper 

bound is ( ),L Lz F  and the upper right corner of the 

upper bound is ( ),U Uz F , the approximation 

( ) ( )
2

1
L

U U L
i U L

x zF x F F F
z z

⎛ ⎞−
= − − − ⎜ ⎟⎜ ⎟−⎝ ⎠

.  Figure 3 shows 

the corresponding p-box for 1z−  and the curve we use 
for approximating the upper bound of this p-box.  



 

Because ( ) ( ){ }i iF x P h x≥ ≤Z , the approximation 
reduces the feasible region.  If a solution is feasible with 
respect to the approximation, then it is feasible with 
respect to the original p-box. 

 

Figure 2.  The p-box for 1z  and the approximation for its 
upper bound. 

 

Figure 3.  The p-box for 1z−  and the approximation for 
its upper bound. 

First, we will solve the deterministic optimization problem 
with all three random variables replaced by constants: 

( )1, ,z P Y=Z  = (0, 1000, 260000).  ( ), ,R L t=d  = (11.75, 
36, 0.25) is the optimal solution that we found.  The 
pressure vessel volume equals 22,410.  Note that the 
probability of failure for constraints 4 and 5 equals the 
probability that 1z−  is less than equal to zero, which is 
imprecise but can be quite large, so it is not a feasible 
solution to the IPDO problem. 

Next, we let ( )1(0) 2(0) 0,1000, 260000=Z = Z  and solve 
problem P.  This yields the solution 

( )(1) 6.7606,36.4396,0.3186=d .  (The optimization 
required 348 function evaluations.)  The pressure vessel 
volume equals 6,527.  The reliability analysis technique 

shows that, for all 2i S∈ , ( ){ }(1) , 0 0iP g ≤ =d Z , so the 

solution is feasible, and the algorithm stops. 

COMPARISON TO RBDO 

The IPDO addresses situations in which probability 
distributions are not precise.  An alternative approach is 
to use a traditional RBDO approach while varying the 
probability distributions of the random variables.  The 
basic idea is to loop over different combinations of the 
distributions for the random variables.  For each 
combination, we solve a traditional RBDO problem to get 
a solution.  This procedure will yield a set of solutions 
and gives the designer some idea of where good 
solutions lie.  But it is not clear how a designer should 
select a solution from this set. 

Another alternative is to remove the imprecision.  For 
instance, one can replace each imprecise probability 
distribution by the maximum entropy probability 
distribution that fits within the p-box.  This yields an 
RBDO problem.  For the first example in Section 5, we 
can model 1z , 2z , and 3z  with uniform distributions.  
The range for 1z  and 2z  is [-1, 1], and the range for 3z  
is [1, 2].  Solving the RBDO problem yields the solution 

( )4.2227, 2.5132=d .  The objective function value is 
6.7359, which is better than that of the more 
conservative IPDO solution, but the probability of failure 
of this new solution is greater than the desired target for 
some of the probability distributions in the p-boxes of the 
random variables.   

CONCLUSION 

This paper introduced the imprecise probability design 
optimization (IPDO) problem, in which there is a set of 
deterministic design variables for which the designer 
chooses values and a set of imprecise random 
variables, which may be manufacturing errors, uncertain 
engineering parameters, or other sources of uncertainty.  
This paper presented a sequential approach for solving 
this problem.  To avoid unnecessary calculations, the 
approach partitions the constraints into two sets.  By 
exploiting their special structure, the cumulative 
probability distributions for constraints in the first set are 
calculated only once and then replaced with an 
approximation.  After this, the approach solves a series 
of deterministic optimization problems and shifts 
selected constraints in each iteration in order to reduce 
the probability of failure.   

We have used examples to illustrate the usefulness of 
the approach.  The results show that the proposed IPDO 
approach finds high-quality feasible solutions, though 
the computational effort is increased because of the 
computational effort of the reliability analysis technique 
and the iterations needed to converge to a solution.  



 

Although this work was motivated by problems in which 
only imprecise probability distributions are available, the 
approach’s use of Dempster-Shafer structures makes it 
compatible with other approaches within the domain of 
evidence theory as well [37].  In the examples given 
here, all but one of the imprecise random variables have 
known distributions with interval parameters.  However, 
as shown in the last example, the approach can be used 
for problems with any type of imprecise random variable; 
the computational effort will not change. 

Many RBDO and similar studies have developed 
sequential approaches, and we followed this practice as 
well because it reduces the computational effort needed 
to find a solution.  As mentioned earlier, we cannot 
prove that the approach will converge, which is a 
general disadvantage of this strategy.  In addition, our 
approach may be too conservative because it uses the 
upper probabilities in the constraints.  Additional errors 
may be introduced by using approximations for the 
upper probabilities. 

The scalability of the proposed approach depends 
primarily upon the convolutions needed to determine the 
imprecise distributions of the ( )ih Z .  If there are many 
imprecise random variables that interact in the same 
convolution, the reliability analysis will require more 
effort.   

Future work will focus on improving the computational 
efficiency and stability of the approach by considering 
adaptive loop-methods similar to those proposed by 
Youn [10] and on evaluating the performance of double-
loop approaches to this problem as well. 
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