
 

 1 Copyright © 2015 by ASME 

Proceedings of the ASME 2015 International Design Engineering Technical Conferences &  
Computers and Information in Engineering Conference 

IDETC/CIE 2015 
August 2-5, 2015, Boston, Massachusetts, USA 

DETC2015-47407 

RISK-BASED PATH PLANNING OPTIMIZATION METHODS FOR UAVs OVER INHABITED AREAS 
 
 

Eliot Rudnick-Cohen 
University of Maryland 

College Park, Maryland 20742 
Email: erudnick@umd.edu 

Jeffrey W. Herrmann 
University of Maryland 

College Park, Maryland 20742 
Email: jwh2@umd.edu 

Shapour Azarm 
University of Maryland 

College Park, Maryland 20742 
Email: azarm@umd.edu 

 

 

ABSTRACT 
Operating unmanned aerial vehicles (UAVs) over inhabited 

areas requires mitigating the risk to persons on the ground.  

Because the risk depends upon the flight path, UAV operators 

need approaches (techniques) that can find low-risk flight paths 

between the mission’s start and finish points. In some areas, the 

flight paths with the lowest risk are excessively long and indirect 

because the least-populated areas are too remote.  Thus, UAV 

operators are concerned about the tradeoff between risk and 

flight time. Although there exist approaches for assessing the 

risks associated with UAV operations, existing risk-based path 

planning approaches have considered other risk measures 

(besides the risk to persons on the ground) or simplified the risk 

assessment calculation. This paper presents a risk assessment 

technique and bi-objective optimization methods to find low-risk 

and time (flight path) solutions and computational experiments 

to evaluate the relative performance of the methods (their 

computation time and solution quality).  The methods were a 

network optimization approach that constructed a graph for the 

problem and used that to generate initial solutions that were then 

improved by a local approach and a greedy approach and a 

fourth method that did not use the network solutions. The 

approaches that improved the solutions generated by the 

network optimization step performed better than the optimization 

approach that did not use the network solutions. 

NOMENCLATURE 
c(e) cost (weighted sum of the time and risk)  

  of an edge 

d  distance between two adjacent points  

  in the discrete probability distribution 

kD  population density of a census tract 

( ), 1D i i +  expected crash location population density  

  along a leg  

f(X) cost objective function 

xf   fraction (“tolerance”) for the x-coordinates 

yf   fraction (“tolerance”) for the y-coordinates 

( )1 2,G n n  edge between nodes 1n  and 2n  

1K  expected number of crashes per 100,000  

  flight hours 

2K  expected area in which persons will be  

  killed if the vehicle crashes 

n number of waypoints 

N  number of whole intervals in a leg 

xn  number of points in a row in the grid 

yn  number of points in a column in the grid 

jkp  probability associated with a point in the  

  bivariate distribution 

( ), 1r i i +  risk of flying a leg 

r  normalization constant for risk 

( ), 1t i i +  time to travel a leg 

t   normalization constant for time 

V  vehicle airspeed  

rw   weight on risk 

tw   weight on time  

( ),S S
x y  start point of the flight plan 

( ),F F
x y  finish point of the flight plan 

( ),i ix y  coordinates of a waypoint  

,L Ux x   lower and upper bounds for waypoint  

  x-coordinates 

,L Uy y  lower and upper bounds for waypoints  

  y-coordinates 

X x- and y-coordinates of a list of waypoints 

XN list of waypoints in solution obtained from 

 network optimization  

x∆   horizontal distance between adjacent nodes  
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  (vertices) in the grid 

y∆  vertical distance between adjacent nodes  

  (vertices) in the grid 

( ),jk jkx y∆ ∆  rotated coordinates of a point  

  in the bivariate distribution 

kΓ  census tract polygon  

 
1. INTRODUCTION 

In the United States, the use of UAVs by government 

agencies, commercial enterprises, and others requires mitigating 

the risk to persons on the ground.  A UAV operator must 

demonstrate that the activity poses little risk; that is, the expected 

number of persons harmed by the activity must be sufficiently 

small (less than one fatality per ten million flight hours [1]).  The 

risk depends upon the size and reliability of the UAV, the 

weather conditions, the number of persons who are on the ground 

close to the path of the UAV, the shelters that protect these 

persons, and other factors.   

Because the risk to persons on the ground depends upon the 

UAV flight path, UAV operators are interested in approaches 

(techniques) that can find low-risk flight paths between the start 

and finish points of the activity.  In some areas, the flight paths 

with the lowest risk are excessively long and indirect because the 

least-populated areas are too remote.  Thus, UAV operators are 

concerned about the tradeoff between risk and flight time.  In 

some cases, risk acceptance criteria may set an upper bound on 

the risk; in other cases, UAV fuel capacity or other operational 

issues may set upper bounds on the time.  In general, it is 

important to find the tradeoffs between these two objectives (risk 

versus time). 

A wide variety of methods exist for solving path planning 

problems for UAVs [2]. An important distinction to make 

amongst these methods is between methods that merely find a 

feasible path (a path that satisfies all constraints present) and 

methods that find an optimal path (a path that optimizes some 

objective in addition to satisfying constraints). In the context of 

risk-based path planning for UAVs, most methods define some 

form of cost metric to represent the type of risk being minimized 

and then formulate the problem as a multiobjective optimization 

problem where the objectives are the risk metric and another 

metric representing the length of the path (such as distance 

traversed along the path or time needed to traverse the path).  

Examples of types of risk considered in such methods include 

risk posed due to environmental hazards and terrain [3][4][5], 

risk posed due to large scale obstacles such as radar or heavily 

populated areas  [6][7],  the risk of a mid-air collision [8][9][10] 

or the risks to persons on the ground [7]. 

In general most methods for solving UAV path planning 

optimization problems utilize either discrete graph-based 

planning approaches or mathematical optimization techniques 

that optimize a fixed number of waypoints.  A discussion of 

methods for solving graph based planning problems with 

multiple objectives can be found in [11]. Many mathematical 

optimization techniques for risk-based planning utilize 

evolutionary optimization algorithms [12] [13]. 

The risk posed by a UAV to people on the ground can be 

described in terms of the expected number of fatalities associated 

with a given flight, which can be determined by identifying the 

possible crash locations and multiplying the probability of a 

UAV crash by the number of people present in the potential crash 

location [1].  Typically this is quantified as a 2-dimensional 

probability distribution representing the likelihood of crashing at 

a certain distance away from the point of the failure.  For 

example, Pikaar et al. [14] used data about historical crashes at 

airports to generate a crash location distribution for the specific 

scenarios of takeoff and landing.  For the more general case of a 

UAV in flight, Wu and Clothier used worst case assumptions to 

bound the potential crash area [15], which can be used as a 

distribution with the assumption of a uniform distribution in 

those bounds.  Ford and McEntee [16] generated a bivariate 

crash location distribution using simple assumptions about the 

flight dynamics of an unpowered UAV.  Lum et al. [17] 

determined a non-uniform distribution of potential crash 

locations for a particular UAV by performing Monte-Carlo 

simulations of that UAV failing and crashing to the ground.     

The authors of this paper are unaware of any risk-based path 

planning approach that has considered the distribution of where 

a UAV will crash and the population density of the areas in and 

near the flight path.  The problem is computationally difficult, 

and this work considers approaches that can quickly find high-

quality solutions. More specifically, this paper presents a risk-

based optimization approach for exploring the tradeoffs between 

the risk to persons on the ground and flight time and describes 

the results of a computational study that evaluated the 

performance of these optimization algorithms for some specific 

instances.  The approach is a novel combination of multiple 

elements: (1) a flight dynamics model that predicts the crash 

location for a UAV that loses power at a given altitude and 

velocity, (2) a Monte Carlo simulation to generate a probability 

distribution of crash locations, (3) a risk assessment method that 

incorporates the crash location distribution (not the worst case) 

and the population density near the flight path (based on census 

data), (4) an efficient algorithm for finding a flight path that 

minimizes both time and risk, (5) two different solution 

improvement techniques, (6) a bi-objective framework for 

generating a set of non-dominated solutions, and (7) a set quality 

metric for evaluating and comparing sets of bi-objective 

solutions.   

The rest of the paper is organized as follows. Section 2 

formulates the problem, and Section 3 describes the solution 

approaches.  Section 4 presents the design of the experiments 

that were conducted, and Section 5 discusses the results.  Section 

6 is the summary and conclusions. 

2. PROBLEM DEFINITION 
Given a start point A, a finish point B, a planned altitude, 

and the UAV velocity, the objective is to find the UAV’s flight 

plan from A to B to minimize risk and time.  In theory, the flight 

plan can be any continuous path from A to B.  However, here, it 

is treated as a piecewise linear path passing through n waypoints 

( ),i ix y . The first waypoint is the start point ( ) ( )0 0, ,S S
x y x y=

, and the last waypoint is the end point ( ) ( )1 1, ,F F
n nx y x y+ + = . 

In theory, there are no constraints on the locations of the 

waypoints.  In practice, of course, flight plans must avoid 

different types of restricted airspace, which are ignored in this 

study (but these could easily be added as constraints if needed).  

For computational purposes, locations of the waypoints were 

restricted to remain within upper and lower bounds on the x- and 
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y-coordinates, in order to place a limit on the size of the region 

being considered. 

The total time of a flight path is the sum of the time for each 

leg.  In this study, the time ( ), 1t i i +  equals the distance from 

( ),i ix y  to ( )1 1,i ix y+ +
 divided by the vehicle’s airspeed V. 

In this study, the risk measure is the expected number 

of deaths.  The total risk for a flight plan equals the sum of 

the risk for each leg.  The risk measure depended upon the 

population density at the potential crash locations, which 

are determined by the flight path.  This study did not 

consider the influence of shelter.   

3. OPTIMIZATION APPROACHES 
The risk-based path planning optimization problem had two 

stages: (Stage 1) estimate the probability distribution of the crash 

location based on planned altitude and velocity of the UAV; and 

(Stage 2) determine the flight paths that minimize time and risk. 

To obtain a crash location distribution, a Monte Carlo 

simulation of a UAV crashing was used to generate sample crash 

locations.  To model a UAV crashing, a dynamics simulation of 

an unpowered UAV with freely moving control surfaces 

(unpowered) was implemented using the non-linear ODE models 

detailed in [18] and [19].  By solving this non-linear ODE 

numerically using MATLAB’s ode45 solver [20] it was thus 

possible to simulate the trajectory of how a UAV would crash 

given specific initial conditions.  An example of a crash 

trajectory from this simulation can be seen in Figure 1.  The final 

crash location of the UAV was determined to be the point at 

which the UAV had a height (z) of zero from the ground, 

meaning it had hit the ground.  By varying the initial conditions 

of the UAV randomly about a fixed initial state, it was thus 

possible to simulate a range of possible crash locations by 

repeatedly running this simulation from those initial conditions.  

A list of the state variables used in the model, the baseline case, 

and the distributions of the random perturbations can be found in 

Table 1. The aerodynamic coefficients and physical properties 

used for the UAV being simulated were based on those provided 

for a Cessna 182 aircraft [21].  For the purposes of generating 

the crash distribution used in the results presented in this paper, 

10,000 simulation runs were conducted.  The crash distribution 

was then used to compute the risk presented to people on the 

ground. The crash distribution was discretized into a 2-

dimensional grid of bins for computational efficiency.  A heat 

map of this discretized distribution can be found in Figure 2.  In 

this distribution, the probabilities of landing in the central cells 

are much greater than those of other cells, but the small cell size 

(relative to the lengths of the edges and the size of the census 

tracts) makes the distribution adequate.   

Figure 1. EXAMPLE UAV CRASH TRAJECTORY. THE 
CIRCLE DENOTES THE START POINT AND THE “×” 
DENOTES THE FINAL CRASH LOCATION. 

 

The process of discretizing the crash distribution yielded a 

two-dimensional discrete probability distribution that specifies, 

for each discrete point in an m-by-m grid, the probability that the 

UAV will land at that spot.  By choosing m to be an odd number, 

the center of this discrete probability distribution is the location 

of the UAV when the failure occurs and it begins to crash.   

To compute the risk for a single leg of the flight plan, the 

risk was sampled at the midpoints of N intervals of length d along 

the leg, where d was 3 times the length of the bins used to 

discretize the crash distribution. 
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Figure 2. DISCRETIZED HEAT MAP OF CRASH DENSITY 
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Table 1. INITIAL CONDITIONS FOR MONTE CARLO 
SIMULATIONS. 
Velocity (m/s) Mean Deviation 

xɺ   50 50 

yɺ  0 10 

zɺ 0 10 

Position (m)   

x 0 0 

y 0 0 

z 1,524 0 

Orientation, Euler angles (degrees)   

Φ 0 11.25 

Θ 0 11.25 

Ψ  0 11.25 

Angular Velocity (degrees/s)   

P 0 11.25 

Q 0 11.25 

R 0 11.25 

Control surface deflection (degrees)   

Elevator Deflection (��) 0 11.25 

Rudder Deflection (��) 0 11.25 

Aileron Deflection (��) 0 11.25 

Control surface deflection rates 

(degrees/s) 

  

Elevator deflection rate (���) 0 0 

Rudder deflection rate (���) 0 0 

Aileron deflection rate (���) 0 0 

 

Next, the points in the probability distribution are rotated by 

the bearing along the leg for which the risk is being evaluated.  

There are m rows of points in the bivariate distribution, each with 

m points.   

A “cloud” of (m + N - 1)m points is created as follows:  

Step 1. For a = 1, …, m, do the following: 

For b = 1, ,N… , 1ab b ax x x= + ∆ɶ , 1ab b ay y y= + ∆ɶ . 

For b = 1, , 1N N m+ + −… , 
, 1ab N a b Nx x x − += + ∆ɶ , 

, 1ab N a b Ny y y − += + ∆ɶ  

Step 2. If m N≤ , then the probabilities for each point can be 

determined as follows: 

For b = 1, , 1m−… , 

1

1
b

ab ak

k

p p
N

=

= ∑ɶ .  

For b = , ,m N… , 

1

1
m

ab ak

k

p p
N

=

= ∑ɶ . 

For b = 1, , 1N N m+ + −… , 

1

1
m

ab ak

k b N

p p
N

= − +

= ∑ɶ . 

Step 3. If m N> , then the probabilities for each point can be 

determined as follows: 

For b = 1, , 1N −… , 

1

1
b

ab ak

k

p p
N

=

= ∑ɶ .  

For b = , ,N m… , 

1

1
b

ab ak

k b N

p p
N

= − +

= ∑ɶ . 

For b = 1, , 1m N m+ + −… , 

1

1
m

ab ak

k b N

p p
N

= − +

= ∑ɶ . 

Step 4. Loop over the census tracts.  For each census tract k, 

determine which points in the “cloud” are in that tract’s polygon 

kΓ  and, for ( , )ab ab kx y ∈ Γɶ ɶ , set 
ab kd D=ɶ .  Calculate the 

likelihood of crashing into census tract k:  

( , )ab ab k

k ab

x y

p

∈Γ

Π = ∑
ɶ ɶ

ɶ  
(2)

Step 5.  Determine the expected population density along this 

leg: 
1

1 1

m N m

ab ab k k

a b k

D p d D

+ −

= =

= = Π∑ ∑ ∑ɶɶ  (3)

The risk of flying from ( ),i ix y  to ( )1 1,i ix y+ +
 can thus be 

determined as shown in Equation 4. 

( ) ( ) ( )1
2, 1 , 1 , 1

100, 000

K
r i i t i i K D i i

 
+ = + + 

 
 

 

(4) 

Multiple optimization approaches were used for Stage 2, 

which generated the flight paths, but all of them involved the 

same procedure for calculating D  for a leg. The approaches 

used for Stage 2 generated a set of flight paths by solving a set 

of path-planning problems.  Biobjective optimization was 

performed using a weighting method, in which the overall 

objective function (“cost”) is defined to be the weighted sum of 

the scaled risk and time objectives, as detailed in Equation 5.  

Thus two weighting constants are defined, the time weighting 

constant tw  and the risk weighting constant rw . The quantities 

tw  and rw must be non-negative and satisfy 1t rw w+ = : 

( )
( ) ( )

0 0

, 1 , 1n n

t r

i i

t i i r i i
f X w w

t r
= =

+ +
= +∑ ∑  (5)

By varying the weights tw  and rw  and minimizing the 

value of Equation 5 it was possible to generate a set of different 

flight paths with the optimization approaches discussed in this 

paper.  

As detailed next, the optimization approaches included 

network-based approaches and a non-network approach that 

used only continuous variable optimization methods. 

 

3.1 Network Optimization Approach 
The network optimization step created a network with a grid 

of nodes and the start and finish points, evaluated the time and 

risk of every edge in the graph, and then found the minimum-

cost path from the start to the finish point.  The network consisted 

of a uniformly spaced grid of nodes with horizontal spacing 

( ) ( )/ 1U L
x xx x n∆ = − −  and vertical spacing  

( ) ( )/ 1U L
y yy y n∆ = − −  and the points ( ),S S

x y  and ( ),F F
x y .  

Nodes outside the census tracts of states being considered in the 

optimization were deleted.  This type of network was chosen for 

its simplicity, which makes it easy to create.   

Each node in the grid was connected with edges going to the 

eight nodes neighboring it in the grid.  In addition, for the points 

( ),S S
x y  and ( ),F F

x y , edges were added from each point to the 

four corners of the grid element that contained that point.  A 

visual representation of this can be seen in Figure 3. 



 

 5 Copyright © 2015 by ASME 

Next, the time and risk of each edge ( , )i j  was determined 

followed by the calculation of the cost (weighted sum of the time 

and risk) of an edge: 

( ) ( ) ( ) ( )( ( , , , )) , / , /i i j j t rc G x y x y w t i j t w r i j r= +  (6)

The network optimization approach found the minimal cost 

path XN using Dijkstra’s algorithm [22].  Changing the values of 

the weights tw  and rw  required only recalculating the edge 

costs and optimizing; it was not necessary to build the network 

and evaluate the time and risk of every edge every time.   

Figure 3. IN THIS SECTION OF THE GRID, THE SOLID 
CIRCLES ARE NODES IN THE GRID, THE DIAMOND IS THE 
START (OR FINISH POINT), AND THE ADDITIONAL EDGES 
SHOW HOW THAT POINT IS CONNECTED TO THE NODES 
IN THE GRID. 

3.2 Local Improvement Approach 
The local improvement approach used the output of the 

network optimization step as its initial solution and then found a 

solution near that solution by solving a continuous variable 

optimization problem with Equation 5 as its objective function 

and subject to the additional constraints defined by Equation 7 

that kept each waypoint close to a waypoint of the initial 

solution.  The constraints are determined by the tolerances xf  

and 
yf : 

N N
i x x i i x x

N N
i y y i i y y

x f x x f

y f y y f

− ∆ ≤ ≤ + ∆

− ∆ ≤ ≤ + ∆
 (7)

Pseudocode: 

( )( )
0

0

  

  , , . 7  

N

sol

X X

X Minimize f X X Eq

=

=
 

 

3.3. Greedy Improvement Approach 
The greedy improvement approach also used the output of 

the network optimization step as its initial solution and then 

searched for a solution near that solution using a continuous 

variable optimization method subject to the constraints imposed 

by Equation 7.  However, the greedy improvement approach 

solved a sequence of n subproblems, one for each waypoint in 

turn.  This way each subproblem that was solved had only two 

variables (the coordinates for one waypoint) which was solved 

relatively quickly (compared with the time needed to optimize 

all of the waypoints at the same time).  Additionally, since only 

one waypoint was being optimized at a time, the objective 

function defined in Equation 5 only needed to be evaluated for 

two legs: the ones immediately before and after the waypoint 

being optimized. 

 

Pseudocode: 

[ ] [ ]( )( )
[ ] [ ]

0

0

0

 

  1 

                 , , .7

                 

N

sol

sol

X X

For i n

X i Minimize f X i X Eq

X i X i

End

=

= …

=

=

  

 

3.4 Non-network Approach 
The non-network approach did not require the network 

optimization step because it used a straight-line path between the 

start and finish points as the initial solution.  The number of 

waypoints was fixed (at 5, 10, 14, or 20), and their coordinates 

were constrained by the lower and upper bounds (not the nodes 

of the network).  In the initial solution, the waypoints divided the 

straight-line path into legs with the same distance. 

4. EXPERIMENTAL DESIGN 
Multiple studies were conducted to compare the 

performance characteristics of the methods described above.  In 

particular, the computational experiments were designed to 

provide insights into the tradeoffs between the quality of the 

solutions that were generated and the computational effort 

required.  Throughout these studies two different scenarios were 

considered, a flight traveling from Patuxent River Naval Air 

Station, Maryland, to Camp David, Maryland (the “Pax River 

case”), and a flight traveling from College Park Airport in 

College Park, Maryland, to Virginia Tech Executive Airport in 

Blacksburg, Virginia (the “College Park case”).   

A set of solutions was generated by solving the problem 

with different combinations of weights, with tw  = 0, 0.1, 0.2, 

…, 1.0, and 1r tw w= − . For the network optimization step the 

dimensions of the grid (the number of points in each direction) 

were varied between several sizes: 30×12, 40×16, 50×20.  (For 

example, the 30×12 grid began with 360 nodes arranged in 30 

columns and 12 rows.)  Examples of the types of grids used can 

be seen in Figure 4 and Figure 5.  Solutions for the greedy and 

local improvement approaches were computed for each grid size 

and for three different values of the tolerance parameters xf  and 

yf : 0.25, 0.5 and 0.75 times the size of each grid element. See 

Table 2 for a comparison of sizes.  The non-network-based 

approach was used to generate solutions with 5, 10, 14, and 20 

waypoints.  MATLAB’s fmincon [23] function was used to solve 

the continuous optimization problems in the local improvement, 

greedy improvement, and non-network-based approaches. 
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Table 2. HORIZONTAL AND VERTICAL EDGE 

LENGTHS FOR DIFFERENT CASES CONSIDERED. 

Case  Grid size 

Horizontal 

edge length 

(°longitude) 

(∆	) 

Vertical edge 

length 

(°latitude) 

(∆
) 

College  30x12 0.2989 0.3707 

Park  40x16 0.2223 0.2875 

  50x20 0.1769 0.2146 

Pax River  30x12 0.3092 0.5414 

  40x16 0.2299 0.3970 

  50x20 0.1830 0.3134 

Each approach generated a set of solutions (one for each 

value of the weights, see Equation 6).  In order to quantify and 

compare the quality of a set of solutions, a closeness metric based 

on the method detailed in [24] was developed.  To calculate this 

metric, the time and risk of every solution generated was scaled 

so that the scaled time and risk of all of the solutions generated 

for that case ranged from 0 to 1.  The metric can be defined as 

the left handed Riemann sum of the points comprising a Pareto 

frontier with two additional points added to the frontier at (max 

objective 1, min objective 2) and (min objective 1, max objective 

2) (where the min and max objective function values are relative 

to all Pareto frontiers being compared), these two additional 

points represent the worst case values for any regions not 

covered by the Pareto frontier being evaluated.  Note that if the 

values of each objective function are scaled onto [0,1] using a 

min-max scaling these two added points become (1,0) and (0,1). 

Figure 6 shows a visual example of this metric.  A lower value 

for this closeness metric will represent a higher quality solution 

as the solution set will be closer to the ideal point of (0,0). 

5. RESULTS 
The results were generated using a computer equipped with 

an Intel i5 2400 processor and 4 GB RAM.  MATLAB’s fmincon 

was used with its default tolerances and the active set method as 

its optimization algorithm.  To generate the crash distribution, all 

of the relevant error tolerances in MATLAB’s ode45 solver were 

set as 10-3.  For each case, three grids were generated.  For each 

grid, the network optimization and the local and greedy 

improvement approaches were used, each with three different 

values for the tolerances (which yielded seven sets of solutions 

per grid and 21 network-based sets of solutions).  The non-

network approach was also used with four different values for 

the number of waypoints, which generated four more sets of 

solutions.  Thus, there were 25 sets of solutions for each case.  

Figures 11 and 12 show the average computation time required 

for each approach (the average is taken over the different values 

for the weights) and the closeness of the sets of solutions that 

were generated.  

 
Figure 6. EXAMPLE OF CLOSENESS METRIC, THE BLACK
POINTS ARE THE PARETO FRONTIER, THE BLACK AREA 
SHOWS THE AREA CONSIDERED IN THE METRIC FROM 
[24], AND THE GRAY AREA SHOWS THE ADDITIONAL AREA 
THAT IS CONSIDERED BY THE METRIC DETAILED HERE. 

 

    

Figure 4. THE 40x16 NETWORK (THE “GRID”) FOR THE 
COLLEGE PARK CASE.  THE GRAY LINES SHOW THE 
CENSUS TRACTS IN VIRGINIA, MARYLAND, AND THE 
DISTRICT OF COLUMBIA.  THE BLACK LINES SHOW THE 
EDGES IN THE GRID.  THE CYAN CIRCLE SHOWS THE 
START POINT (COLLEGE PARK, MD), THE CYAN TRIANGLE 
IS THE END POINT (BLACKSBURG, VA). 

    
Figure 5. THE 40x16 NETWORK (THE “GRID”) FOR THE PAX 
RIVER CASE.  THE GRAY LINES SHOW THE CENSUS 
TRACTS IN PENNSYLVANIA, DELAWARE, VIRGINIA, WEST 
VIRGINIA, MARYLAND, AND THE DISTRICT OF COLUMBIA.  
THE BLACK LINES SHOW THE EDGES IN THE GRID.  THE 
CYAN CIRCLE SHOWS THE START POINT (PAX RIVER, MD), 
THE CYAN TRIANGLE IS THE END POINT (CAMP DAVID, MD). 
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(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 7. PARETO FRONTIER RESULTS FOR THE COLLEGE PARK CASE: (a) GREEDY APPROACH, 30x12 GRID, (b) LOCAL 
APPROACH, 30X12 GRID, (c) GREEDY APPROACH, 40x16 GRID, (d)  LOCAL APPROACH, 40x16 GRID, (e) GREEDY 
APPROACH, 50x20 GRID, (f) LOCAL APPROACH, 50x20 GRID. 
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Figure 8. PARETO FRONTIER RESULTS FOR PAX RIVER CASE: (a) GREEDY APPROACH, 30x12 GRID, (b) LOCAL 
APPROACH, 30X12 GRID, (c) GREEDY APPROACH, 40x16 GRID, (d)  LOCAL APPROACH, 40x16 GRID, (e) GREEDY 
APPROACH, 50x20 GRID, (f) LOCAL APPROACH, 50x20 GRID. 
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Figure 9. PARETO FRONTIER RESULTS FOR THE 
COLLEGE PARK CASE USING THE NON-NETWORK 
METHOD FOR DIFFERENT NUMBERS OF WAYPOINTS. 

 

Figure 10. PARETO FRONTIER RESULTS FOR THE PAX 
RIVER CASE USING THE NON-NETWORK METHOD FOR 
DIFFERENT NUMBERS OF WAYPOINTS. 
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Figure 11. CLOSENESS AGAINST COMPUTATION TIME FOR THE COLLEGE PARK CASE. 
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The results displayed in Figure 7 and Figure 8 show that the 

different approaches generate very different sets of solutions.  

For the College Park case, the network optimization approach 

generated a variety of solutions, including some with moderate 

values of both time and risk, as shown in Figure 7.  The local 

improvement and greedy improvement approaches similarly 

generated a variety of solutions that improved upon those 

generated by the network approach.  The non-network approach 

also generated a variety of solutions, as shown in Figure 9.   

The network optimization approach for the Pax River case 

generated only two distinct solutions (a nearly straight, 

minimum-time solution and a wandering minimum-risk 

solution).  As a result, the local improvement and greedy 

improvement approaches generated sets of solutions that had 

many solutions near the minimum-time solution and one solution 

near the minimum-risk solution (as shown in Figure 8).  The non-

network approach was unable to find a low-risk solution; it 

generated solutions near the initial straight-line solution, as 

shown in Figure 9 and Figure 10.  

The closeness metric shows that the quality of the solutions 

generated by the local improvement and greedy improvement 

approaches were superior to the quality of the solutions that the 

network optimization step generated.  This was true for both 

approaches in the College Park case.  In the Pax River case, the 

greedy approach with the 40×16 and 50×20 grids generated 

solutions that reduced closeness.  The tolerance value did not 

show any consistent trend in how it affected the closeness of the 

solutions.  As can be seen in Figure 7 and Figure 8, the Pareto 

frontiers generated by these approaches either dominate or are 

non-dominated by those produced by only using the network 

approach.  The greedy and local approaches both produce 

superior results to using only the network optimization approach.  

The Pareto frontiers in Figure 9 and Figure 10 show that the non-

network approach was unable to construct long, low-risk 

solutions like those that the network approaches found.  The lack 

of low-risk solutions is due to the non-network approach 

converging to local optima that are near the initial straight-line 

solution, which prevents the approach from finding solutions 

near the better solutions that the network-based approaches find. 

Several examples of the differences between these two types of 

solutions can be seen in Figure 13. The greedy and local 

approaches appear to be the best of the approaches that were 

considered in this paper (that is, they produced the best Pareto 

frontiers of solutions). 

As can be seen in Figure 11 and Figure 12, neither the local 

improvement approach nor the greedy improvement approach 

was substantially better than the other in terms of solution 

quality; the computational effort, however, was quite different: 

the local improvement approach required more effort than the 

greedy improvement approach (the computational effort for both 

includes the computational effort for the network optimization 

step).  The computational effort of the non-network approach 

increased as the number of waypoints increased, which is 

expected given that an increase in waypoints means that the 

optimizer has more variables that it needs to manipulate. 

Additionally, as the grid becomes finer (includes more nodes), 

the computation time required for the greedy improvement 

approach does not grow at the same rate as the computation time 

required for the local improvement approach does, which 

suggests that the difference in the computation time for the two 

methods would likely increase for larger problems. 

The quality of the solutions and the computational effort of 

the network optimization step varied as the grid size varied, but 

no trend was evident.  In general the solution quality should 

improve as the grid resolution becomes finer (and the network 

has more points), though it should be noted that exceptions to 

this can exist if the nodes at a certain resolution allow for a 

solution that does not exist for nearby grid resolutions.  This 

issue can be avoided by using a significantly finer grid, though 

 
Figure 12. CLOSENESS AGAINST COMPUTATION TIME FOR THE PAX RIVER  CASE. 
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it should be noted that doing so will increase the computational 

effort of obtaining solutions accordingly. 

Although the computation time needed to construct the 

network is low compared to the computation time needed for the 

non-network approach, the network optimization step does 

require sufficient memory to store the network and the time and 

risk of every edge.  The number of edges is proportional to the 

number of nodes, which will increase as the resolution of the grid 

increases.  Methods that use mathematical optimization 

techniques (such as the non-network approach used in these 

experiments) do not store the graph and do not require the 

associated memory.  

In terms of both computation time and solution quality, the 

greedy approach produces the best results of the methods 

considered.  While the local approach does also provide a similar 

level of improvement in quality over the network solution, the 

substantially lower time required for the greedy approach would 

make it more useful in practice. 

6. CONCLUDING REMARKS 
This paper presented a bi-objective path planning 

optimization framework for exploring the tradeoffs between risk 

and flight time for UAVs. A risk assessment technique and bi-

objective optimization methods were developed to find low-risk 

and time (flight path) solutions. Computational experiments 

were performed to evaluate the relative performance of the 

proposed optimization methods. The optimization methods 

considered were based on a network optimization approach, 

followed by improvements by a local approach and a greedy 

approach that used the network optimization results. A fourth 

approach did not use the network results but locally optimized 

the coordinates of a fixed number of waypoints. 

The results from the computational experiments described 

the relative performance of the four methods and illustrated the 

tradeoffs involved.  These results indicate that in terms of both 

computation time and solution quality, the greedy improvement 

approach produces the best results of the methods considered. 

The proposed framework can be extended to incorporate 

factors such as the shelter provided by buildings that would 

affect the risk calculations.  It can also be extended to incorporate 

other types of risks (including the risk of mid-air collisions). 

Future work will consider testing other approaches for 

generating the initial solutions for the non-network approach, 

using approximations to evaluate solutions faster, using higher 
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Figure 13. EXAMPLES OF THE SOLUTIONS GENERATED BY THE NETWORK APPROACH WITH THE 40X16 GRID (RED) AND THE 

NON-NETWORK APPROACH WITH 20 WAYPOINTS (ORANGE) FOR THE COLLEGE PARK CASE: (a) 0, 1t rw w= =  (b) 

0.3, 0.7t rw w= = (c) 0.6, 0.4t rw w= = (d) 1, 0t rw w= = . 
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resolution population data for takeoff and landing patterns, using 

time-dependent population data (time of day, seasonality, special 

events), developing consistent heuristics for risk for use in an A* 

search and incorporating shelter data.  The problem formulation 

can be expanded to include selecting the altitude and velocity of 

each leg (which affects crash location distribution) and avoiding 

no-fly zones. 
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