
  

 

Abstract—In multi-agent collaborative search missions, task 

allocation is required to determine which agents will perform 

which tasks.  We propose a new approach for decentralized 

task allocation based on a decentralized genetic algorithm 

(GA). The approach parallelizes a genetic algorithm across 

the team of agents, making efficient use of their computational 

resources. In the proposed approach, the agents continuously 

search for and share better solutions during task execution.  

We conducted simulation experiments to compare the 

decentralized GA approach and several existing approaches.  

Two objectives were considered: a min-sum objective 

(minimizing the total distance traveled by all agents) and a 

min-time objective (minimizing the time to visit all locations 

of interest). The results showed that the decentralized GA 

approach yielded task allocations that were better on the min-

time objective than those created by existing approaches and 

solutions that were reasonable on the min-sum objective. The 

decentralized GA improved min-time performance by an 

average of 5.6% on the larger instances. The results indicate 

that decentralized evolutionary approaches have a strong 

potential for solving the decentralized task allocation 

problem. 

I. INTRODUCTION 

 Coordinating the behaviors of autonomous agents in multi-

agent systems typically involves allocating tasks across a 

multi-agent team.  For example, if the tasks are locations that 

the agents need to visit, the task allocation specifies, for each 

agent, a sequence of locations that the agent will visit. 

In a centralized system, a central planner with global 

knowledge allocates the tasks for all agents as needed.  This 

approach not only fails to utilize the agents’ computing 

resources but also leaves the system vulnerable: if the 

communication link between the central planner and the 

agents fails, then agents may not receive their assigned tasks, 

and those tasks will never be completed.  In a decentralized 

system, however, each agent leverages its computing 

resources to determine its own task allocation, and the agents 

do not depend upon a single central planner. They 

communicate with one another to deconflict or improve their 

allocations.   

 The task allocation problem considered herein is related to 

the multiple traveling salesman problem (mTSP) and the 

vehicle routing problem (VRP), for which evolutionary 

algorithms (such as genetic algorithms) have been used to 

generate high quality solutions [1, 2].  Because they use a 

population of candidate solutions, evolutionary algorithms 

have an inherent parallelism that is compatible with 

decentralized task allocation.  Moreover, they can search the 

entire space of solutions and continuously seek better 

solutions, unlike current decentralized task allocation 

approaches [3-15], which can stop at suboptimal solutions.   

 Although decentralized task allocation approaches have 

been proposed previously [3-15], we are not aware of any that 

have attempted to parallelize evolutionary algorithms over a 

team of agents. To address this gap, we developed a new 

decentralized evolutionary approach that utilizes a genetic 

algorithm (GA) that runs continuously and exchanges 

complete solutions (sets of task sequences) between agents.  

This enables the approach to continuously improve its current 

allocation of tasks during execution and potentially achieve 

globally optimal allocations for the team. We conducted 

experiments that compared the decentralized GA to other 

state-of-the-art methods, and these show that this approach 

often performed better than these existing methods when the 

objective is minimizing the time to complete all tasks. 

 The rest of this paper is organized as follows: Section II 

discusses previous work related to decentralized task 

allocation. Section III describes the problem formulation. 

Section IV discusses the solution approach that we 

considered.  Section V details the experimental setup 

including the problem instances. Section VI presents and 

discusses the results. Section VII summarizes and concludes 

this paper. 

II. RELATED WORK 

 Decentralized task allocation problems can be classified 

into market-based approaches and optimization-based 

approaches [3, 4].  In market-based approaches, auctioneers 

decide how tasks are allocated based on bids from other 

agents. In decentralized auction approaches, every agent acts 

as an auctioneer and uses bids from all other agents to auction 

tasks. Khamis et al. [3] noted that these approaches have 

advantages in scalability and adaptability.  

 Decentralized auction approaches have been proposed for 

decentralized task allocation. For example, the Consensus-

Based Auction Algorithm (CBAA) and Consensus-Based 

Bundle Algorithm (CBBA) [5] attempt to maximize reward 

(minimize cost) over the entire system.  Each algorithm 

iterates between an auction phase, which creates a task 

allocation using local information, and a consensus phase, 

which processes information from other agents. Extensions to 

the CBBA include the Asynchronous CBBA (ACBBA) [6] 
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and the Performance Impact Algorithm (PIA) [7], which 

modifies the auction and consensus phases to better optimize 

the global system objective. The Hybrid Information and Plan 

Consensus (HIPC) approach [8] uses a centralized assignment 

method to generate better task allocations in the auction phase 

by predicting what tasks other agents should complete. 

Nanjananth and Gini [9] proposed a parallel repeated auctions 

approach where every agent is an auctioneer and bidder in 

parallel allowing for more adaptability than the typical 

consensus-based auction approaches. These heuristic 

approaches construct a solution but do not search for better 

solutions.   

 Optimization-based approaches utilize distributed 

constraint optimization, game theory, metaheuristics, or other 

optimization techniques [10]. Because the task allocation 

problem is a variant of the mTSP, which is NP-hard [11], the 

optimization-based approaches’ computational effort may, as 

instance size increases, grow more quickly than that of 

auction approaches.  The Decentralized Hungarian (DH) 

algorithm [12] is similar to the CBAA but replaces the auction 

step with solving a task allocation problem via the Hungarian 

method [13]. Evolutionary algorithms, particularly GAs, are 

often used to find solutions to the VRP and mTSP [1, 2], but 

these typically centralized approaches cannot be used for 

decentralized task allocation.  For decentralized task 

allocation, Choi and Kim [14] proposed a two-stage GA-

based approach in which each agent first determines its own 

task sequence using a GA and then communicates with other 

agents to exchange tasks if that reduces costs. Ping-An et al. 

[15] proposed an approach in which each agent uses a GA to 

generate task clusters that are used to improve initial 

allocations generated from an auction-based approach. 

Although these approaches use a GA, they do not exploit its 

parallelism and its ability to continue searching for better 

solutions as tasks are completed. Decentralized GAs [16] 

allow for parallelizing the operations of a GA, which have 

been applied to problems such as scheduling [17, 18]. 

 In the decentralized, parallelized GA proposed here 

(described in Section IV), each agent maintains its own 

population and exchanges solutions instead of running an 

independent GA.  Thus, the decentralized GA coordinates the 

computing resources of every agent to search for a complete 

solution in a novel way. 

III. PROBLEM DEFINITION 

 The decentralized task allocation problem can be 

formulated as follows: A task is a location of interest (in a 

two-dimensional space) that some agent must visit. Given a 

set of n tasks and a set of m agents, a solution specifies task 

sequences for the agents such that every task is completed by 

an agent.  The objective function is either the total distance 

traveled by all agents (min-sum) or the time at which the last 

location is visited (min-time).  (These objectives are relevant 

because they correspond to minimizing fuel consumption and 

mission completion time.)  The system is decentralized: there 

is no centralized planner, and the agents make their own task 

allocation decision.  Agents start from different positions. 

Every agent initially knows all of the locations of interest but 

none of the locations of the other agents in the system. Each 

agent can communicate with all other agents in the system. 

Agents all travel with the same constant speed when 

executing tasks.  The mission terminates when all locations of 

interest have been visited.  This problem is equivalent to the 

mTSP where cities are locations of interest and salesmen are 

vehicles. 

 More precisely, let xi = (xi1, …, xin(i)) be a task sequence for 

agent i and let n(i) be the number of tasks in that sequence.  

That is, the j-th task in the task sequence is task xij, where xij 

is an element of {1, …, n}.  Let x = {x1, …, xm} be the set of 

task sequences for all of the agents.   

Let W be the two-dimensional workspace in which tasks 

are located.  Let d(pa, pb) be the distance between any two 

points pa and pb in W, and, for convenience, let d(xij, xik) be 

the distance between the locations of the tasks xij and xik. Let 

q1, …, qm be the initial locations of the agents.  Let v be the 

speed of the agents. 

Let cd(xi) be the total distance traveled by agent i to 

complete the task sequence defined by xi: 

 

cd(xi) = d(q
i
, xi1) + ∑ d(xi,j-1, xij)

n(i)

j = 2

. (1) 

Let c(x) be the cost function.  We considered two cost 

functions.  The first, the min-sum objective, is the sum of the 

distance traveled by the agents: 

𝑐(𝒙) =  ∑ cd(xi)

m

i = 1

. (2) 

The second, the min-time objective, is the time needed to 

complete all of the tasks, which equals the time that the last 

task is completed: 

𝑐(𝒙) =  max{cd(x1),…,cd(xm)} / v. (3) 

IV. DECENTRALIZED GA 

A. Preliminaries 

 The decentralized GA uses a min-max nearest neighbors 

algorithm to construct some solutions.  This algorithm is a 

constructive heuristic that generates a complete set of task 

sequences for all agents and allocates all tasks present. It 

iteratively constructs task sequences by appending the 

lowest cost tasks to the agents’ task sequences until all tasks 

are allocated. The cost of a task for a particular agent equals 

the distance of the agent’s task sequence after appending the 

task to the sequence. This algorithm can construct high 

quality task allocations on the min-max objective.   

B. Approach  

 Our decentralized GA is a new approach that parallelizes a 

GA for solving a task allocation problem across the entire 

team of agents and continually improves the allocations as the 

agents execute tasks in real time.  Each agent maintains and 

improves a population of solutions; coordinating these 

populations by sharing solutions across the multi-agent 

system is an innovative feature of our approach.  In each 

agent’s population, a solution is a set of task sequences (not 



  

merely the task sequence for one agent).  These sequences 

allocate all of the tasks not yet completed.  Each agent 

periodically shares its current best solution with the other 

agents and incorporates any solutions it receives into its 

population. Because the agents exchange high-quality 

solutions, they are collectively solving the task allocation 

problem and reaching consensus while using multiple 

populations and fully exploiting the parallelism in the GA.  

Moreover, by using a separate thread for the GA, each agent 

can continue the search for better solutions while the agent 

performs a task.  

 In this decentralized approach, every agent has two threads: 

the first runs a GA, and the second is the Task Sequence 

Execution thread.  This structure is shown in Fig. 1. The first 

thread solves the task allocation problem using a modified 

implementation of an existing GA [19] that has been used to 

solve the mTSP.  This evolutionary approach evolves 

(improves) a population of solutions over multiple iterations. 

In each iteration, it selects the highest quality solutions in the 

current population and then mutates them to generate a new 

population of solutions.  Each solution is represented as a 

sequence of tasks and a set of breakpoints that divide the 

sequence into sequences for each agent.  Every agent must 

have at least one task.  The initial population includes a 

solution constructed by using the min-max nearest neighbors 

algorithm. The GA has no iteration limit; it runs until the 

mission is complete.  Completed tasks are removed from the 

solutions as needed.   

 

 
Fig. 1. Basic structure of the decentralized GA, which runs 

two threads that interact to generate and update the agent’s 

task sequence.   

  

 The pseudocode for the Task Sequence Execution thread is 

provided in Algorithm 1.  This thread periodically queries the 

GA thread for its current best solution and uses that solution 

to determine the current task sequence for the agent to execute 

regardless the agent’s current task sequence.  The Task 

Sequence Execution thread also exchanges with the other 

agents information such as tasks that have been completed, 

the agent’s current location, and the agent’s current best 

solution. This thread shares any solutions received with the 

GA thread, which incorporates them into its population.  

When the number of remaining tasks (locations) becomes less 

than the number of agents, this thread uses the min-max 

nearest neighbors algorithm to construct a task sequence for 

the agent (instead of using the GA’s solution, which has at 

least one task for every agent).    

 

Algorithm 1: Pseudocode for task sequence execution run in 

a separate thread on agent i. 

1:  function TASK_SEQUENCE_EXECUTION() 

2:  while mission not complete:  

3:  if num_agents > num_locations: 

4:   current_solution  solution from nearest neighbors 

5:  else: 

6:    current_solution  current best solution from GA 

7:  end if 

8:  task_sequence  current_solution{i} 

9:   execute(task_sequence) 

10: send information to all other agents 

11: receive information from whoever responds 

12: store received solutions for incorporation into GA  

13: end while 

14: end function 

V. EXPERIMENTAL SETUP 

 We compared the decentralized GA against other 

decentralized task allocation approaches on problem 

instances of different sizes. Each case was run for 20 trials to 

account for variation in the simulation and the stochastic 

behavior of the GA approach. The methods were 

implemented in Python and simulated in real time using 

Robot Operating System (ROS) Kinetic [20]. Agents were 

simulated in separate processes, similar to how a 

decentralized system would operate. Each agent has a 

communication interface written in C++ that allows them to 

broadcast messages to all other agents in the system. Further 

details of the simulation environment can be found in [21]. 

The speed of each agent was set to 5 meters per second. The 

frequency at which every approach was called was set to 0.01 

seconds. Simulations were run on an AMD Ryzen 7 2700 

Eight-Core 3.20 GHz Processor with 16.0 GB of RAM. 

Simulations were terminated when all tasks were completed. 

We implemented three variants of the GA, each with a 

different cost function. The cost function is used to determine 

a solution’s fitness (quality). In the first variant (GA-ms), the 

cost function was the min-sum objective (the total distance).  

In the second variant (GA-mm), the cost function was the 

min-max objective (the maximum distance traveled by any 

agent).  In the third variant (GA-multi), the cost function was 

a weighted combination of the min-max objective and the 

min-sum objective where w is the weight on the min-sum 

objective:  

𝑐(𝒙) = max
i

cd(xi) + w ∑ cd(xi).

m

i = 1

 (4) 

The weight w for the GA-multi approach was set to a value of 

0.01 which was found to work best in preliminary testing. 

A. Problem Instances 

 Our tests used five problem instances. In each one, the 

locations of interest were randomly selected from a uniform 

distribution over a 100 meter by 100 meter region. The sizes 



  

(n x m) of the instances were 10 x 5, 20 x 4, 30 x 3, 35 x 5, 

and 40 x 6. The instances of size 30 x 3 and 35 x 5 are shown 

in Fig. 2.  

 

  
(a) (b) 

Fig. 2. Example problem instances of size (n x m) (a) 30 x 3 

and (b) 35 x 5. The agents are the circles that are labelled 

UAV# and the locations of interest are the red squares. Axes 

indicate position in meters. 

B. Decentralized Task Allocation Approaches 

 We ran multiple decentralized task allocation approaches 

as benchmarks in our experiments.  The basic structure for 

these approaches is shown in Fig. 3 where only a Task 

Sequence Execution thread is run. The execution thread runs 

continuously and repeatedly iterates between two phases.  

Phase 1 constructs a task sequence for the agent when no 

sequence exists (e.g., its tasks have been completed by itself 

or other agents).  Phase 2 shares information with the other 

agents and removes any tasks that agents have completed.   

We used existing optimization-based and auction-based 

methods as well as a greedy nearest neighbors (NN) approach 

to generate benchmark solutions.  In some cases, we 

implemented variants that use different cost functions when 

determining which task to add to a task sequence.   

1. Greedy Nearest Neighbors (NN) 

 The greedy NN method constructs a task sequence for an 

agent by assigning itself the lowest cost task that has not been 

completed. The cost of a task equals the distance from the 

agent’s current location to the location to be visited.  

2. Decentralized Hungarian (DH) 

 The DH approach [9] uses a cost matrix in which each entry 

is the cost of allocating one task to one agent. This method 

assigns only a single task at a time to the agent. To construct 

a task sequence (Phase 1), the agent runs the Hungarian 

algorithm [13] on the cost matrix to obtain the optimal one-

to-one task allocation for the system.  In Phase 2, the agent 

exchanges cost matrices with all other agents and then updates 

its cost matrix.  We implemented two variants of this 

approach.  In the first variant (DH-ms), the cost function is 

the distance between the agent and the location to visit.  In the 

second variant (DH-mm), the cost function equals this 

distance plus a penalty that equals how far the agent has 

already traveled.  

3. Consensus-based Auction Algorithm (CBAA) 

 We implemented two variants of the CBAA [5].  In the first 

variant (CBAA-ms), the cost function is the distance between 

the agent and the location to visit.  In the second variant 

(CBAA-mm), the cost function equals this distance plus a 

penalty that equals how far the agent has already traveled.   

4. Asynchronous Consensus-based Bundle Algorithm 

(ACBBA) 

 The ACBBA [6] assigns a bundle of tasks instead of a 

single one. Because multiple tasks are being allocated, an 

agent’s bids depend on the tasks that are already in its task 

sequence.  We implemented two variants of this approach. In 

the first variant (ACBBA-ms), the cost function is the 

distance between the previous task in the bundle and the 

current task.  In the second variant (ACBBA-mm), the cost 

function equals the distance that the agent will travel from the 

start of the mission to the current task.  

5. Performance Impact Algorithm (PIA) 

 The PIA [7] modifies the CBBA to utilize a different kind 

of bid evaluation called “significance.” It also makes 

improvements in how conflict resolution is achieved in the 

consensus phase. Our implementation used the ACBBA 

consensus rules. For this method, only the min-sum cost 

function was implemented.   

 Preliminary testing showed that the ACBBA and PIA 

variants performed best with a bundle size of at most five and 

were limited to five iterations. The iteration limits for the DH 

and CBAA approaches were set to two.  

6. Hybrid Information and Plan Consensus (HIPC) 

 In the HIPC approach [8], each agent solves the task 

allocation problem for the entire system to determine its own 

task sequences.  Our implementation used a min-max nearest 

neighbors algorithm (see Section IV.A). As with the PIA, this 

approach was modified to use the ACBBA consensus rules.  

 

 
Fig. 3. In the considered decentralized task allocation 

approaches, the Task Sequence Execution thread first creates 

a task sequence and then removes completed tasks from it 

during execution.   

 

VI. RESULTS  

A. Total Time and Distance Performance 

 Both total time and total distance performance metrics were 

considered. These metrics were evaluated for all methods and 

variants to analyze which variants performed best on each 

metric. Table I reports the average time to visit all locations 

of interest when using each approach on each of the five 

instances. Time was recorded from the start of the trial until 



  

all locations of interest were visited.  Total distance is the sum 

of every agent’s distance travelled during the mission.   

As seen in Table I, the variants of the decentralized GA 

approach yielded the lowest total time solutions for four of the 

five instances.  On the 10 x 5 instance, the DH-ms and DH-

mm approaches outperformed the other approaches because 

the small number of tasks per agent makes it easy to find a 

high-quality solution, but the GA-ms variant performed 

nearly as well.    On the 20 x 4 instance, the GA-multi 

approach had the best average time of all methods; the GA-

mm variant performed nearly as well.  On the 30 x 3 instance, 

the GA variants outperformed all other methods on the time 

metric.  On the 35 x 5 instance, the GA-ms and GA-multi 

variants outperformed all other methods by a significant 

margin. Finally, on the 40 x 6 instance, the GA-multi 

approach outperformed the other methods. The other variants 

of the proposed GA approach also outperformed most of the 

other approaches on this instance with the exception of the 

DH variants which had similar performance. These results 

show the GA variants, particularly the GA-multi approach, 

often outperformed the other methods on the time to complete 

all tasks on instances of larger size. 

 Table II reports the average total distance traveled by all 

agents when using each approach on each of the five 

instances.  

 For the total distance metric, the variants of the 

decentralized GA approach did not perform as well as the best 

decentralized task allocation approaches.  The HIPC approach 

achieved the best total distance on the 10 x 5, 20 x 4, and 35 

x 5 instances. On the 20 x 4 instance, the GA-multi’s 

performance was nearly the same as the HIPC approach.  On 

the 30 x 3 instance, the ACBBA variants outperformed the 

other methods; the GA-multi’s performance was 3.6% greater 

(worse).  On the 35 x 5 instance, the HIPC approach had the 

best performance; the GA-ms’s performance was 4.0% 

greater.  The GA-ms approach outperformed most approaches 

on the 40 x 6 instance with the exception of the PIA and HIPC 

approaches. The GA-ms’s performance was 6.4% greater than 

the PIA on this instance. As the instance size increased, the 

GA-ms variant performed better than the other decentralized 

GA variants because it used the total distance as the fitness 

function. Also, as the instance size increased, the 

decentralized GA variants performed better relative to the 

other approaches. This indicates that the proposed approach 

has good scalability. 

Although the decentralized GA approach yielded task 

allocations that were better on the min-time objective than the 

solutions that the other approaches created, the allocations 

that it found were not superior on the min-sum objective.   

It may be that the min-time objective is harder for the other 

approaches to optimize as it requires knowledge of other 

agent’s task sequences, which is not an obstacle for the 

decentralized GA approach, in which every agent considers 

complete solutions.  The min-sum objective may be easier for 

the other approaches, especially when the instance is not 

large, so the decentralized GA approach is unable to find 

better solutions on the smaller instances.  Moreover, the 

constraint that every agent must be assigned at least one task 

may prevent the GA from finding solutions that have better 

total distance because, in some cases, using fewer agents can 

reduce total distance.   

 

Table I. Time (in seconds) to visit all locations of interest 

averaged over 20 trials for each approach on each instance.  

The boldface values are the best average for each instance. 

 Instance 

Approach 10 x 5 20 x 4 30 x 3 35 x 5 40 x 6 

NN 19.6 45.5 41.6 33.4 26.2 

CBAA-ms 14.7 28.8 41.5 30.8 26.0 

CBAA-mm 14.7 28.8 41.4 27.6 26.0 

DH-ms 11.6 29.6 42.1 25.8 23.5 

DH-mm 11.6 29.6 42.7 25.9 23.3 

ACBBA-ms 15.1 24.1 34.4 27.6 26.8 

ACBBA-mm 14.6 25.5 34.4 24.6 25.8 

PIA 19.2 31.3 45.1 34.6 31.8 

HIPC 11.8 27.9 34.4 24.0 24.7 

GA-ms 12.0 26.0 33.9 21.8 23.6 

GA-mm 12.5 23.3 33.8 24.2 23.3 

GA-multi 14.1 22.5 33.3 22.3 22.5 

 

Table II. Total distance traveled by all agents averaged over 

20 trials for each approach on each instance.  The boldface 

values are the best average for each instance. 

 Instance 

Approach 10 x 5 20 x 4 30 x 3 35 x 5 40 x 6 

NN 486.3 903.8 603.3 826.8 773.2 

CBAA-ms 301.2 517.6 606.7 689.0 719.4 

CBAA-mm 301.5 519.8 602.2 625.2 709.2 

DH-ms 256.8 517.8 615.1 584.2 649.6 

DH-mm 256.2 516.6 626.7 585.1 641.1 

ACBBA-ms 327.8 404.3 441.1 624.8 690.8 

ACBBA-mm 334.5 428.8 439.7 520.8 683.0 

PIA 209.8 482.3 508.1 481.5 563.9 

HIPC 198.1 401.6 445.0 443.0 590.0 

GA-ms 222.7 448.9 456.6 460.5 600.0 

GA-mm 268.1 429.6 468.8 553.9 636.7 

GA-multi 245.6 404.6 455.8 494.9 604.0 

 

B. Example Task Sequences 

 Figs. 4(a) and 4(b) present the agents’ executed task 

sequences (paths) in the 30 x 3 instance using the DH-mm and 

GA-multi approaches.  For this instance, the GA-multi 

approach produced task sequences that are better (on both the 

min-sum and min-time objectives) than those that the DH-mm 

approach constructed (see Section VI.A). This can be seen in 

Fig. 4(a) with the long final legs taken by all three agents 

running the DH-mm approach. This does not occur when 

using the GA-multi approach as seen in Fig. 4(b). 



  

 Figs. 5(a) and 5(b) present the task sequences (paths) 

generated and executed for the 35 x 5 instance using the 

ACBBA-mm and GA-multi approaches.  The GA-multi 

approach produced task sequences that are better on both 

objectives than those that the ACBBA-mm approach 

constructed (see Section VI.A). In particular, UAV4’s task 

sequence is significantly improved when using the GA-multi 

approach versus the ACBBA-mm which can be seen with the 

purple paths in Figs. 5(a) and 5(b). 

 

  
(a) (b) 

Fig. 4. Task sequences produced by running agents with (a) 

DH-mm and (b) GA-multi on the 30 x 3 instance.  The colored 

lines are the agents’ task sequences, and the agents’ ending 

positions are denoted by the labels UAV0, UAV1, and UAV2. 

Axes indicate position in meters. 

 

  
(a) (b) 

Fig. 5. Task sequences produced by running agents with (a) 

ACBBA-mm and (b) GA-multi on the 35 x 5 instance.  The 

colored lines are the agents’ task sequences, and the agents’ 

ending positions are denoted by the labels UAV0 to UAV4. 

Axes indicate position in meters. 

 

C. Experimental Convergence 

 As each agent’s GA thread continues to run and the agent 

receives good solutions from the other agents, the quality of 

the solutions in the population generally improves over time 

early in the mission.  Table III is a time history that lists the 

average deviation from the lowest cost solution found 

throughout the mission and demonstrates how quickly this 

improvement occurs at the beginning of the mission.  The GA 

approach rapidly converged to high quality task sequences 

that are shared by all agents in the system.  

VII. CONCLUSION 

 This paper presented a new decentralized GA approach for 

determining task allocations for multi-agent systems. This 

approach exploits the parallelism inherent in a GA and 

continues the search for better solutions while the agents 

complete tasks. We evaluated three variants of this approach 

by comparing their solutions to those generated by existing 

decentralized task allocation approaches. Our experiments 

considered both the min-sum and min-time objectives.   

  

Table III. Average relative difference in cost between current 

best solution and best solution found (as percentage) for the 

GA variants at each sampled time for the four largest problem 

instances.  Time (in seconds) is the duration from the time that 

the first iteration finished and yielded a complete solution.   

Variant 
Time 

(s) 

Instance 

20 x 4 30 x 3 35 x 5 40 x 6 

GA-ms 0 31.4 30.6 28.5 30.0 

 1 5.0 3.8 3.2 12.1 

 2 4.6 2.5 0.7 7.2 

 3 4.3 2.4 0.5 2.0 

 4 3.8 2.1 0.4 1.9 

GA-mm 0 26.4 21.6 25.6 49.0 

 1 8.2 1.1 14.9 17.2 

 2 7.3 1.9 12.2 11.7 

 3 5.6 1.7 16.5 7.7 

 4 4.2 0.6 14.2 5.4 

GA-multi 0 37.3 22.7 34.4 55.4 

 1 7.1 2.3 12.8 13.8 

 2 4.0 1.6 11.9 12.0 

 3 3.9 1.2 11.8 7.2 

 4 3.9 0.9 11.7 5.1 

  

 The results showed that, on average, the decentralized GA 

rapidly converged to high quality solutions on the instances 

considered and performed better on larger instances than 

existing approaches on mission completion time. It performed 

almost as well as the ACBBA and HIPC approaches on the 

total distance metric. The results demonstrate the 

performance advantages of the decentralized GA over 

standard approaches, particularly when the objective is 

minimizing mission completion time.  Future work can 

develop enhancements within this new class of decentralized 

task allocation approaches that use parallelized evolutionary 

algorithms over a team of agents. 

 Future work should consider implementing and testing 

improvements to the decentralized GA approach. These 

include tuning the GA’s parameters (such as the population 

size), adding more genetic operations such as crossover, and 

removing the constraint that every agent must be assigned at 

least one task. Other evolutionary algorithms such as particle 

swarm optimization [22] can also be considered. Also, 

alternative problem scenarios with unknown and moving 

targets may produce different results. We can also consider 

larger test instances to better understand the scalability of our 

approach. 
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