

Abstract—In multi-agent collaborative search missions, task

allocation is required to determine which agents will perform

which tasks. We propose a new approach for decentralized

task allocation based on a decentralized genetic algorithm

(GA). The approach parallelizes a genetic algorithm across

the team of agents, making efficient use of their computational

resources. In the proposed approach, the agents continuously

search for and share better solutions during task execution.

We conducted simulation experiments to compare the

decentralized GA approach and several existing approaches.

Two objectives were considered: a min-sum objective

(minimizing the total distance traveled by all agents) and a

min-time objective (minimizing the time to visit all locations

of interest). The results showed that the decentralized GA

approach yielded task allocations that were better on the min-

time objective than those created by existing approaches and

solutions that were reasonable on the min-sum objective. The

decentralized GA improved min-time performance by an

average of 5.6% on the larger instances. The results indicate

that decentralized evolutionary approaches have a strong

potential for solving the decentralized task allocation

problem.

I. INTRODUCTION

 Coordinating the behaviors of autonomous agents in multi-

agent systems typically involves allocating tasks across a

multi-agent team. For example, if the tasks are locations that

the agents need to visit, the task allocation specifies, for each

agent, a sequence of locations that the agent will visit.

In a centralized system, a central planner with global

knowledge allocates the tasks for all agents as needed. This

approach not only fails to utilize the agents’ computing

resources but also leaves the system vulnerable: if the

communication link between the central planner and the

agents fails, then agents may not receive their assigned tasks,

and those tasks will never be completed. In a decentralized

system, however, each agent leverages its computing

resources to determine its own task allocation, and the agents

do not depend upon a single central planner. They

communicate with one another to deconflict or improve their

allocations.

 The task allocation problem considered herein is related to

the multiple traveling salesman problem (mTSP) and the

vehicle routing problem (VRP), for which evolutionary

algorithms (such as genetic algorithms) have been used to

generate high quality solutions [1, 2]. Because they use a

population of candidate solutions, evolutionary algorithms

have an inherent parallelism that is compatible with

decentralized task allocation. Moreover, they can search the

entire space of solutions and continuously seek better

solutions, unlike current decentralized task allocation

approaches [3-15], which can stop at suboptimal solutions.

 Although decentralized task allocation approaches have

been proposed previously [3-15], we are not aware of any that

have attempted to parallelize evolutionary algorithms over a

team of agents. To address this gap, we developed a new

decentralized evolutionary approach that utilizes a genetic

algorithm (GA) that runs continuously and exchanges

complete solutions (sets of task sequences) between agents.

This enables the approach to continuously improve its current

allocation of tasks during execution and potentially achieve

globally optimal allocations for the team. We conducted

experiments that compared the decentralized GA to other

state-of-the-art methods, and these show that this approach

often performed better than these existing methods when the

objective is minimizing the time to complete all tasks.

 The rest of this paper is organized as follows: Section II

discusses previous work related to decentralized task

allocation. Section III describes the problem formulation.

Section IV discusses the solution approach that we

considered. Section V details the experimental setup

including the problem instances. Section VI presents and

discusses the results. Section VII summarizes and concludes

this paper.

II. RELATED WORK

 Decentralized task allocation problems can be classified

into market-based approaches and optimization-based

approaches [3, 4]. In market-based approaches, auctioneers

decide how tasks are allocated based on bids from other

agents. In decentralized auction approaches, every agent acts

as an auctioneer and uses bids from all other agents to auction

tasks. Khamis et al. [3] noted that these approaches have

advantages in scalability and adaptability.

 Decentralized auction approaches have been proposed for

decentralized task allocation. For example, the Consensus-

Based Auction Algorithm (CBAA) and Consensus-Based

Bundle Algorithm (CBBA) [5] attempt to maximize reward

(minimize cost) over the entire system. Each algorithm

iterates between an auction phase, which creates a task

allocation using local information, and a consensus phase,

which processes information from other agents. Extensions to

the CBBA include the Asynchronous CBBA (ACBBA) [6]

Decentralized Task Allocation in Multi-Agent Systems Using a

Decentralized Genetic Algorithm

Ruchir Patel1, Eliot Rudnick-Cohen1, Shapour Azarm1, Michael Otte2, Huan Xu2,3, Jeffrey W.

Herrmann1,3

1Department of Mechanical Engineering, University of Maryland, College

Park, MD 20742
2Department of Aerospace Engineering, University of Maryland, College

Park, MD 20742
3Institute for Systems Research, University of Maryland, College Park, MD
20742

Email: {rpatel18, erudnick, azarm, otte, mumu, jwh2}@umd.edu

and the Performance Impact Algorithm (PIA) [7], which

modifies the auction and consensus phases to better optimize

the global system objective. The Hybrid Information and Plan

Consensus (HIPC) approach [8] uses a centralized assignment

method to generate better task allocations in the auction phase

by predicting what tasks other agents should complete.

Nanjananth and Gini [9] proposed a parallel repeated auctions

approach where every agent is an auctioneer and bidder in

parallel allowing for more adaptability than the typical

consensus-based auction approaches. These heuristic

approaches construct a solution but do not search for better

solutions.

 Optimization-based approaches utilize distributed

constraint optimization, game theory, metaheuristics, or other

optimization techniques [10]. Because the task allocation

problem is a variant of the mTSP, which is NP-hard [11], the

optimization-based approaches’ computational effort may, as

instance size increases, grow more quickly than that of

auction approaches. The Decentralized Hungarian (DH)

algorithm [12] is similar to the CBAA but replaces the auction

step with solving a task allocation problem via the Hungarian

method [13]. Evolutionary algorithms, particularly GAs, are

often used to find solutions to the VRP and mTSP [1, 2], but

these typically centralized approaches cannot be used for

decentralized task allocation. For decentralized task

allocation, Choi and Kim [14] proposed a two-stage GA-

based approach in which each agent first determines its own

task sequence using a GA and then communicates with other

agents to exchange tasks if that reduces costs. Ping-An et al.

[15] proposed an approach in which each agent uses a GA to

generate task clusters that are used to improve initial

allocations generated from an auction-based approach.

Although these approaches use a GA, they do not exploit its

parallelism and its ability to continue searching for better

solutions as tasks are completed. Decentralized GAs [16]

allow for parallelizing the operations of a GA, which have

been applied to problems such as scheduling [17, 18].

 In the decentralized, parallelized GA proposed here

(described in Section IV), each agent maintains its own

population and exchanges solutions instead of running an

independent GA. Thus, the decentralized GA coordinates the

computing resources of every agent to search for a complete

solution in a novel way.

III. PROBLEM DEFINITION

 The decentralized task allocation problem can be

formulated as follows: A task is a location of interest (in a

two-dimensional space) that some agent must visit. Given a

set of n tasks and a set of m agents, a solution specifies task

sequences for the agents such that every task is completed by

an agent. The objective function is either the total distance

traveled by all agents (min-sum) or the time at which the last

location is visited (min-time). (These objectives are relevant

because they correspond to minimizing fuel consumption and

mission completion time.) The system is decentralized: there

is no centralized planner, and the agents make their own task

allocation decision. Agents start from different positions.

Every agent initially knows all of the locations of interest but

none of the locations of the other agents in the system. Each

agent can communicate with all other agents in the system.

Agents all travel with the same constant speed when

executing tasks. The mission terminates when all locations of

interest have been visited. This problem is equivalent to the

mTSP where cities are locations of interest and salesmen are

vehicles.

 More precisely, let xi = (xi1, …, xin(i)) be a task sequence for

agent i and let n(i) be the number of tasks in that sequence.

That is, the j-th task in the task sequence is task xij, where xij

is an element of {1, …, n}. Let x = {x1, …, xm} be the set of

task sequences for all of the agents.

Let W be the two-dimensional workspace in which tasks

are located. Let d(pa, pb) be the distance between any two

points pa and pb in W, and, for convenience, let d(xij, xik) be

the distance between the locations of the tasks xij and xik. Let

q1, …, qm be the initial locations of the agents. Let v be the

speed of the agents.

Let cd(xi) be the total distance traveled by agent i to

complete the task sequence defined by xi:

cd(xi) = d(q
i
, xi1) + ∑ d(xi,j-1, xij)

n(i)

j = 2

. (1)

Let c(x) be the cost function. We considered two cost

functions. The first, the min-sum objective, is the sum of the

distance traveled by the agents:

𝑐(𝒙) = ∑ cd(xi)

m

i = 1

. (2)

The second, the min-time objective, is the time needed to

complete all of the tasks, which equals the time that the last

task is completed:

𝑐(𝒙) = max{cd(x1),…,cd(xm)} / v. (3)

IV. DECENTRALIZED GA

A. Preliminaries

 The decentralized GA uses a min-max nearest neighbors

algorithm to construct some solutions. This algorithm is a

constructive heuristic that generates a complete set of task

sequences for all agents and allocates all tasks present. It

iteratively constructs task sequences by appending the

lowest cost tasks to the agents’ task sequences until all tasks

are allocated. The cost of a task for a particular agent equals

the distance of the agent’s task sequence after appending the

task to the sequence. This algorithm can construct high

quality task allocations on the min-max objective.

B. Approach

 Our decentralized GA is a new approach that parallelizes a

GA for solving a task allocation problem across the entire

team of agents and continually improves the allocations as the

agents execute tasks in real time. Each agent maintains and

improves a population of solutions; coordinating these

populations by sharing solutions across the multi-agent

system is an innovative feature of our approach. In each

agent’s population, a solution is a set of task sequences (not

merely the task sequence for one agent). These sequences

allocate all of the tasks not yet completed. Each agent

periodically shares its current best solution with the other

agents and incorporates any solutions it receives into its

population. Because the agents exchange high-quality

solutions, they are collectively solving the task allocation

problem and reaching consensus while using multiple

populations and fully exploiting the parallelism in the GA.

Moreover, by using a separate thread for the GA, each agent

can continue the search for better solutions while the agent

performs a task.

 In this decentralized approach, every agent has two threads:

the first runs a GA, and the second is the Task Sequence

Execution thread. This structure is shown in Fig. 1. The first

thread solves the task allocation problem using a modified

implementation of an existing GA [19] that has been used to

solve the mTSP. This evolutionary approach evolves

(improves) a population of solutions over multiple iterations.

In each iteration, it selects the highest quality solutions in the

current population and then mutates them to generate a new

population of solutions. Each solution is represented as a

sequence of tasks and a set of breakpoints that divide the

sequence into sequences for each agent. Every agent must

have at least one task. The initial population includes a

solution constructed by using the min-max nearest neighbors

algorithm. The GA has no iteration limit; it runs until the

mission is complete. Completed tasks are removed from the

solutions as needed.

Fig. 1. Basic structure of the decentralized GA, which runs

two threads that interact to generate and update the agent’s

task sequence.

 The pseudocode for the Task Sequence Execution thread is

provided in Algorithm 1. This thread periodically queries the

GA thread for its current best solution and uses that solution

to determine the current task sequence for the agent to execute

regardless the agent’s current task sequence. The Task

Sequence Execution thread also exchanges with the other

agents information such as tasks that have been completed,

the agent’s current location, and the agent’s current best

solution. This thread shares any solutions received with the

GA thread, which incorporates them into its population.

When the number of remaining tasks (locations) becomes less

than the number of agents, this thread uses the min-max

nearest neighbors algorithm to construct a task sequence for

the agent (instead of using the GA’s solution, which has at

least one task for every agent).

Algorithm 1: Pseudocode for task sequence execution run in

a separate thread on agent i.

1: function TASK_SEQUENCE_EXECUTION()

2: while mission not complete:

3: if num_agents > num_locations:

4: current_solution solution from nearest neighbors

5: else:

6: current_solution current best solution from GA

7: end if

8: task_sequence current_solution{i}

9: execute(task_sequence)

10: send information to all other agents

11: receive information from whoever responds

12: store received solutions for incorporation into GA

13: end while

14: end function

V. EXPERIMENTAL SETUP

 We compared the decentralized GA against other

decentralized task allocation approaches on problem

instances of different sizes. Each case was run for 20 trials to

account for variation in the simulation and the stochastic

behavior of the GA approach. The methods were

implemented in Python and simulated in real time using

Robot Operating System (ROS) Kinetic [20]. Agents were

simulated in separate processes, similar to how a

decentralized system would operate. Each agent has a

communication interface written in C++ that allows them to

broadcast messages to all other agents in the system. Further

details of the simulation environment can be found in [21].

The speed of each agent was set to 5 meters per second. The

frequency at which every approach was called was set to 0.01

seconds. Simulations were run on an AMD Ryzen 7 2700

Eight-Core 3.20 GHz Processor with 16.0 GB of RAM.

Simulations were terminated when all tasks were completed.

We implemented three variants of the GA, each with a

different cost function. The cost function is used to determine

a solution’s fitness (quality). In the first variant (GA-ms), the

cost function was the min-sum objective (the total distance).

In the second variant (GA-mm), the cost function was the

min-max objective (the maximum distance traveled by any

agent). In the third variant (GA-multi), the cost function was

a weighted combination of the min-max objective and the

min-sum objective where w is the weight on the min-sum

objective:

𝑐(𝒙) = max
i

cd(xi) + w ∑ cd(xi).

m

i = 1

 (4)

The weight w for the GA-multi approach was set to a value of

0.01 which was found to work best in preliminary testing.

A. Problem Instances

 Our tests used five problem instances. In each one, the

locations of interest were randomly selected from a uniform

distribution over a 100 meter by 100 meter region. The sizes

(n x m) of the instances were 10 x 5, 20 x 4, 30 x 3, 35 x 5,

and 40 x 6. The instances of size 30 x 3 and 35 x 5 are shown

in Fig. 2.

(a) (b)

Fig. 2. Example problem instances of size (n x m) (a) 30 x 3

and (b) 35 x 5. The agents are the circles that are labelled

UAV# and the locations of interest are the red squares. Axes

indicate position in meters.

B. Decentralized Task Allocation Approaches

 We ran multiple decentralized task allocation approaches

as benchmarks in our experiments. The basic structure for

these approaches is shown in Fig. 3 where only a Task

Sequence Execution thread is run. The execution thread runs

continuously and repeatedly iterates between two phases.

Phase 1 constructs a task sequence for the agent when no

sequence exists (e.g., its tasks have been completed by itself

or other agents). Phase 2 shares information with the other

agents and removes any tasks that agents have completed.

We used existing optimization-based and auction-based

methods as well as a greedy nearest neighbors (NN) approach

to generate benchmark solutions. In some cases, we

implemented variants that use different cost functions when

determining which task to add to a task sequence.

1. Greedy Nearest Neighbors (NN)

 The greedy NN method constructs a task sequence for an

agent by assigning itself the lowest cost task that has not been

completed. The cost of a task equals the distance from the

agent’s current location to the location to be visited.

2. Decentralized Hungarian (DH)

 The DH approach [9] uses a cost matrix in which each entry

is the cost of allocating one task to one agent. This method

assigns only a single task at a time to the agent. To construct

a task sequence (Phase 1), the agent runs the Hungarian

algorithm [13] on the cost matrix to obtain the optimal one-

to-one task allocation for the system. In Phase 2, the agent

exchanges cost matrices with all other agents and then updates

its cost matrix. We implemented two variants of this

approach. In the first variant (DH-ms), the cost function is

the distance between the agent and the location to visit. In the

second variant (DH-mm), the cost function equals this

distance plus a penalty that equals how far the agent has

already traveled.

3. Consensus-based Auction Algorithm (CBAA)

 We implemented two variants of the CBAA [5]. In the first

variant (CBAA-ms), the cost function is the distance between

the agent and the location to visit. In the second variant

(CBAA-mm), the cost function equals this distance plus a

penalty that equals how far the agent has already traveled.

4. Asynchronous Consensus-based Bundle Algorithm

(ACBBA)

 The ACBBA [6] assigns a bundle of tasks instead of a

single one. Because multiple tasks are being allocated, an

agent’s bids depend on the tasks that are already in its task

sequence. We implemented two variants of this approach. In

the first variant (ACBBA-ms), the cost function is the

distance between the previous task in the bundle and the

current task. In the second variant (ACBBA-mm), the cost

function equals the distance that the agent will travel from the

start of the mission to the current task.

5. Performance Impact Algorithm (PIA)

 The PIA [7] modifies the CBBA to utilize a different kind

of bid evaluation called “significance.” It also makes

improvements in how conflict resolution is achieved in the

consensus phase. Our implementation used the ACBBA

consensus rules. For this method, only the min-sum cost

function was implemented.

 Preliminary testing showed that the ACBBA and PIA

variants performed best with a bundle size of at most five and

were limited to five iterations. The iteration limits for the DH

and CBAA approaches were set to two.

6. Hybrid Information and Plan Consensus (HIPC)

 In the HIPC approach [8], each agent solves the task

allocation problem for the entire system to determine its own

task sequences. Our implementation used a min-max nearest

neighbors algorithm (see Section IV.A). As with the PIA, this

approach was modified to use the ACBBA consensus rules.

Fig. 3. In the considered decentralized task allocation

approaches, the Task Sequence Execution thread first creates

a task sequence and then removes completed tasks from it

during execution.

VI. RESULTS

A. Total Time and Distance Performance

 Both total time and total distance performance metrics were

considered. These metrics were evaluated for all methods and

variants to analyze which variants performed best on each

metric. Table I reports the average time to visit all locations

of interest when using each approach on each of the five

instances. Time was recorded from the start of the trial until

all locations of interest were visited. Total distance is the sum

of every agent’s distance travelled during the mission.

As seen in Table I, the variants of the decentralized GA

approach yielded the lowest total time solutions for four of the

five instances. On the 10 x 5 instance, the DH-ms and DH-

mm approaches outperformed the other approaches because

the small number of tasks per agent makes it easy to find a

high-quality solution, but the GA-ms variant performed

nearly as well. On the 20 x 4 instance, the GA-multi

approach had the best average time of all methods; the GA-

mm variant performed nearly as well. On the 30 x 3 instance,

the GA variants outperformed all other methods on the time

metric. On the 35 x 5 instance, the GA-ms and GA-multi

variants outperformed all other methods by a significant

margin. Finally, on the 40 x 6 instance, the GA-multi

approach outperformed the other methods. The other variants

of the proposed GA approach also outperformed most of the

other approaches on this instance with the exception of the

DH variants which had similar performance. These results

show the GA variants, particularly the GA-multi approach,

often outperformed the other methods on the time to complete

all tasks on instances of larger size.

 Table II reports the average total distance traveled by all

agents when using each approach on each of the five

instances.

 For the total distance metric, the variants of the

decentralized GA approach did not perform as well as the best

decentralized task allocation approaches. The HIPC approach

achieved the best total distance on the 10 x 5, 20 x 4, and 35

x 5 instances. On the 20 x 4 instance, the GA-multi’s

performance was nearly the same as the HIPC approach. On

the 30 x 3 instance, the ACBBA variants outperformed the

other methods; the GA-multi’s performance was 3.6% greater

(worse). On the 35 x 5 instance, the HIPC approach had the

best performance; the GA-ms’s performance was 4.0%

greater. The GA-ms approach outperformed most approaches

on the 40 x 6 instance with the exception of the PIA and HIPC

approaches. The GA-ms’s performance was 6.4% greater than

the PIA on this instance. As the instance size increased, the

GA-ms variant performed better than the other decentralized

GA variants because it used the total distance as the fitness

function. Also, as the instance size increased, the

decentralized GA variants performed better relative to the

other approaches. This indicates that the proposed approach

has good scalability.

Although the decentralized GA approach yielded task

allocations that were better on the min-time objective than the

solutions that the other approaches created, the allocations

that it found were not superior on the min-sum objective.

It may be that the min-time objective is harder for the other

approaches to optimize as it requires knowledge of other

agent’s task sequences, which is not an obstacle for the

decentralized GA approach, in which every agent considers

complete solutions. The min-sum objective may be easier for

the other approaches, especially when the instance is not

large, so the decentralized GA approach is unable to find

better solutions on the smaller instances. Moreover, the

constraint that every agent must be assigned at least one task

may prevent the GA from finding solutions that have better

total distance because, in some cases, using fewer agents can

reduce total distance.

Table I. Time (in seconds) to visit all locations of interest

averaged over 20 trials for each approach on each instance.

The boldface values are the best average for each instance.

 Instance

Approach 10 x 5 20 x 4 30 x 3 35 x 5 40 x 6

NN 19.6 45.5 41.6 33.4 26.2

CBAA-ms 14.7 28.8 41.5 30.8 26.0

CBAA-mm 14.7 28.8 41.4 27.6 26.0

DH-ms 11.6 29.6 42.1 25.8 23.5

DH-mm 11.6 29.6 42.7 25.9 23.3

ACBBA-ms 15.1 24.1 34.4 27.6 26.8

ACBBA-mm 14.6 25.5 34.4 24.6 25.8

PIA 19.2 31.3 45.1 34.6 31.8

HIPC 11.8 27.9 34.4 24.0 24.7

GA-ms 12.0 26.0 33.9 21.8 23.6

GA-mm 12.5 23.3 33.8 24.2 23.3

GA-multi 14.1 22.5 33.3 22.3 22.5

Table II. Total distance traveled by all agents averaged over

20 trials for each approach on each instance. The boldface

values are the best average for each instance.

 Instance

Approach 10 x 5 20 x 4 30 x 3 35 x 5 40 x 6

NN 486.3 903.8 603.3 826.8 773.2

CBAA-ms 301.2 517.6 606.7 689.0 719.4

CBAA-mm 301.5 519.8 602.2 625.2 709.2

DH-ms 256.8 517.8 615.1 584.2 649.6

DH-mm 256.2 516.6 626.7 585.1 641.1

ACBBA-ms 327.8 404.3 441.1 624.8 690.8

ACBBA-mm 334.5 428.8 439.7 520.8 683.0

PIA 209.8 482.3 508.1 481.5 563.9

HIPC 198.1 401.6 445.0 443.0 590.0

GA-ms 222.7 448.9 456.6 460.5 600.0

GA-mm 268.1 429.6 468.8 553.9 636.7

GA-multi 245.6 404.6 455.8 494.9 604.0

B. Example Task Sequences

 Figs. 4(a) and 4(b) present the agents’ executed task

sequences (paths) in the 30 x 3 instance using the DH-mm and

GA-multi approaches. For this instance, the GA-multi

approach produced task sequences that are better (on both the

min-sum and min-time objectives) than those that the DH-mm

approach constructed (see Section VI.A). This can be seen in

Fig. 4(a) with the long final legs taken by all three agents

running the DH-mm approach. This does not occur when

using the GA-multi approach as seen in Fig. 4(b).

 Figs. 5(a) and 5(b) present the task sequences (paths)

generated and executed for the 35 x 5 instance using the

ACBBA-mm and GA-multi approaches. The GA-multi

approach produced task sequences that are better on both

objectives than those that the ACBBA-mm approach

constructed (see Section VI.A). In particular, UAV4’s task

sequence is significantly improved when using the GA-multi

approach versus the ACBBA-mm which can be seen with the

purple paths in Figs. 5(a) and 5(b).

(a) (b)

Fig. 4. Task sequences produced by running agents with (a)

DH-mm and (b) GA-multi on the 30 x 3 instance. The colored

lines are the agents’ task sequences, and the agents’ ending

positions are denoted by the labels UAV0, UAV1, and UAV2.

Axes indicate position in meters.

(a) (b)

Fig. 5. Task sequences produced by running agents with (a)

ACBBA-mm and (b) GA-multi on the 35 x 5 instance. The

colored lines are the agents’ task sequences, and the agents’

ending positions are denoted by the labels UAV0 to UAV4.

Axes indicate position in meters.

C. Experimental Convergence

 As each agent’s GA thread continues to run and the agent

receives good solutions from the other agents, the quality of

the solutions in the population generally improves over time

early in the mission. Table III is a time history that lists the

average deviation from the lowest cost solution found

throughout the mission and demonstrates how quickly this

improvement occurs at the beginning of the mission. The GA

approach rapidly converged to high quality task sequences

that are shared by all agents in the system.

VII. CONCLUSION

 This paper presented a new decentralized GA approach for

determining task allocations for multi-agent systems. This

approach exploits the parallelism inherent in a GA and

continues the search for better solutions while the agents

complete tasks. We evaluated three variants of this approach

by comparing their solutions to those generated by existing

decentralized task allocation approaches. Our experiments

considered both the min-sum and min-time objectives.

Table III. Average relative difference in cost between current

best solution and best solution found (as percentage) for the

GA variants at each sampled time for the four largest problem

instances. Time (in seconds) is the duration from the time that

the first iteration finished and yielded a complete solution.

Variant
Time

(s)

Instance

20 x 4 30 x 3 35 x 5 40 x 6

GA-ms 0 31.4 30.6 28.5 30.0

 1 5.0 3.8 3.2 12.1

 2 4.6 2.5 0.7 7.2

 3 4.3 2.4 0.5 2.0

 4 3.8 2.1 0.4 1.9

GA-mm 0 26.4 21.6 25.6 49.0

 1 8.2 1.1 14.9 17.2

 2 7.3 1.9 12.2 11.7

 3 5.6 1.7 16.5 7.7

 4 4.2 0.6 14.2 5.4

GA-multi 0 37.3 22.7 34.4 55.4

 1 7.1 2.3 12.8 13.8

 2 4.0 1.6 11.9 12.0

 3 3.9 1.2 11.8 7.2

 4 3.9 0.9 11.7 5.1

 The results showed that, on average, the decentralized GA

rapidly converged to high quality solutions on the instances

considered and performed better on larger instances than

existing approaches on mission completion time. It performed

almost as well as the ACBBA and HIPC approaches on the

total distance metric. The results demonstrate the

performance advantages of the decentralized GA over

standard approaches, particularly when the objective is

minimizing mission completion time. Future work can

develop enhancements within this new class of decentralized

task allocation approaches that use parallelized evolutionary

algorithms over a team of agents.

 Future work should consider implementing and testing

improvements to the decentralized GA approach. These

include tuning the GA’s parameters (such as the population

size), adding more genetic operations such as crossover, and

removing the constraint that every agent must be assigned at

least one task. Other evolutionary algorithms such as particle

swarm optimization [22] can also be considered. Also,

alternative problem scenarios with unknown and moving

targets may produce different results. We can also consider

larger test instances to better understand the scalability of our

approach.

ACKNOWLEDGEMENT

 The authors thank Sharan Nayak for providing the multi-

agent simulation framework used in this paper's experiments.

This work was supported in part by grant FA8750-18-2-0114

from the Air Force Research Laboratory (AFRL).

REFERENCES

[1] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, “The vehicle

routing problem: State of the art classification and review,” Computers

& Industrial Engineering, vol. 99, pp. 300-313, 2016.

[2] A. Singh, “A review on algorithm used to solve multiple traveling

salesman problem,” International Research Journal of Engineering and

Technology (IRJET), vol. 3, no. 4, pp. 598-603, 2016.

[3] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation:

A review of the state-of-the-art,” in Cooperative Robots and Sensor
Networks 2015, pp. 31-51, 2015.

[4] V. Singhal and D. Dahiya, “Distributed task allocation in dynamic

multi-agent system,” in International Conference on Computing,
Communication & Automation, pp. 643-648, 2015.

[5] L. Brunet, H. L. Choi, and J. How, “Consensus-based auction

approaches for decentralized task assignment,” in AIAA guidance,

navigation and control conference and exhibit, p. 6839, 2008.

[6] L. Johnson, S. Ponda, H. L. Choi, and J. How, “Asynchronous

decentralized task allocation for dynamic environments,” in Infotech@

Aerospace 2011, p. 1441, 2011.

[7] W. Zhao, Q. Meng, and P.W. Chung, “A heuristic distributed task

allocation method for multivehicle multitask problems and its
application to search and rescue scenario,” IEEE Transactions on

Cybernetics, vol. 46, no. 4, pp. 902-915, 2016.

[8] L. B. Johnson, H. L. Choi, and J. P. How, “Hybrid information and plan

consensus in distributed task allocation,” in AIAA Guidance,

Navigation, and Control (GNC) Conference, p. 4888, 2013.

[9] M. Nanjanath and M. Gini, “Repeated auctions for robust task

execution by a robot team,” Robotics and Autonomous Systems, vol. 58,

no. 7, pp. 900-909, 2010.

[10] V. Singhal and D. Dahiya, “Distributed Task Allocation in Dynamic

Multi-Agent System,” in International Conference on Computing,
Communication and Automation (ICCCA2015), pp. 643-648, 2015.

[11] M. R. Garey, and D. S. Johnson, “Computers and intractability: a guide

to the theory of NP-completeness”, New York: Freeman, 1979.

[12] S. Ismail and L. Sun, “Decentralized hungarian-based approach for fast

and scalable task allocation,” in 2017 International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 23-28, 2017.

[13] H. W. Kuhn, “The Hungarian Method for the assignment problem,”

Naval Research Logistics Quarterly, vol. 2, pp. 83-97, 1955.

[14] H. J. Choi, Y. D. Kim, and H. J. Kim, “Genetic algorithm based

decentralized task assignment for multiple unmanned aerial vehicles in

dynamic environments,” International Journal of Aeronautical and

Space Sciences, vol. 12, no. 2, pp. 163-174, 2011.

[15] G. Ping-An, C. Zi-Xing, and Y. Ling-Li, “Evolutionary computation

approach to decentralized multi-robot task allocation,” in 2009 Fifth

International Conference on Natural Computation, vol. 5, pp. 415-419,
2009.

[16] J. A. Sarma, “An analysis of decentralized and spatially distributed

genetic algorithms,” Ph.D. dissertation, George Mason Univ., Fairfax,

VA, 1998.

[17] L. Zhang and T. N. Wong, “Distributed genetic algorithm for integrated

process planning and scheduling based on multi agent system,” in 7th

IFAC Conference on Manufacturing Modeling, Management, and
Control, pp. 760-765, 2013.

[18] G. Iordache, M. S. Boboila, F. Pop, C. Stratanm V, Cristea, “A

decentralized strategy for genetic scheduling in heterogeneous
environments,” Multiagent and Grid Systems, vol. 3, no. 4, pp. 355-

367, 2007.

[19] J. Kirk, “Fixed start/end point multiple traveling salesmen problem -

genetic algorithm,” MATLAB® Central File Exchange, 2014,

https://www.mathworks.com/matlabcentral/fileexchange/21299,
[Accessed: July 11, 2019].

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, J., T. Foote, J. Leibs, ...

and A. Y. Ng, “ROS: an open-source Robot Operating System,”

in ICRA workshop on open source software, vol. 3, no. 3.2, p. 5, 2009.

[21] S. Nayak et al., “Experimental Comparison of Decentralized Task

Allocation Algorithms Under Imperfect Communication,” IEEE

Robotics and Automation Letters, vol. 5, no. 2, pp. 572-579, 2020.

[22] A. Salman, I. Ahmad, and S. Al-Madani, “Particle swarm optimization

for task assignment problem,” Microprocessors and Microsystems, vol.

26, no. 8, pp. 363-371, 2002.

