Deen, Analysis of Transport Phenomena

Errata for First and Second Printings

p. 40 In the energy equation for spherical coordinates in Table 2-2,

$$
\ldots \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right) \ldots \text { not } \ldots \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)
$$

p. 43 In last line of text, " $b=p \hat{H}$ " should read " $b=\rho \hat{H}$."
p. 78 In Eq. (3.2-22), y should be Y.
p. 82 In Eq. (3.3-7), " $B i \ll 1$ " not " $B i \gg 1$."
p. 87 In Eq. (3.4-7), second equation, " $\partial C / \partial x "$ not " $\partial C / \partial X$."
p. 138 In Eq. (4.2-18), middle term of second line, change " Θ_{n} " to " Θ."
p. 162 In Eq. $(4.5-73), \sin (n \pi y / b)$ should be $\sin (m \pi y / b)$.
p. 163 In last line of Eq. $(4.5-78),(n \pi)^{2}$ should be $(n \pi / a)^{2}$.
p. 163 In Eq. $(4.5-79),(m \pi)^{2}$ should be $(m \pi / b)^{2}$.
p. 163 Eq. (4.5-81) should read

$$
\frac{d^{2} \Theta_{n m}}{d z^{2}}-\left[(n / a)^{2}+(m / b)^{2}\right] \pi^{2} \Theta_{n m}=0
$$

p. 163 In Eq. (4.5-83), Θ_{n} should be $\Theta_{n m}$ (two places).
p. 164 Eq. (4.5-84) should read

$$
\Theta_{n m}(z)=\frac{2 \sqrt{a b}}{n m \pi^{2}}\left[1-(-1)^{n}\right]\left[1-(-1)^{m}\right] \frac{\sinh \left\{\left[(n / a)^{2}+(m / b)^{2}\right]^{1 / 2} \pi z\right\}}{\sinh \left\{\left[(n / a)^{2}+(m / b)^{2}\right]^{1 / 2} \pi c\right\}}
$$

p. 164 Eq. (4.5-85) should read

$$
\Theta(x, y, z)=\frac{16}{\pi^{2}} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \sum_{\substack{m=1 \\ \text { oodd }}}^{\infty} \frac{1}{n m} \frac{\sinh \left\{\left[(n / a)^{2}+(m / b)^{2}\right]^{1 / 2} \pi z\right\}}{\sinh \left\{\left[(n / a)^{2}+(m / b)^{2}\right]^{1 / 2} \pi c\right\}} \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right)
$$

p. 185 In Eq. (4.8-59), bold " ∇."
p. 222 In each equation of Table 5-1, the last term on the left-hand side should be of the form $v_{z} \partial v_{l} \partial z$, not $v_{z} \partial v / \partial t$. There are several other errors in the last equation, which should read

$$
\rho\left[\frac{\partial v_{z}}{\partial t}+v_{x} \frac{\partial v_{z}}{\partial x}+v_{y} \frac{\partial v_{z}}{\partial y}+v_{z} \frac{\partial v_{z}}{\partial z}\right]=\rho g_{z}-\frac{\partial P}{\partial z}+\left[\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \tau_{z z}}{\partial z}\right]
$$

p. 227 In Table 5-5 the expression for $\tau_{r \theta}$ should read

$$
\tau_{r \theta}=\tau_{\theta r}=\mu\left[r \frac{\partial}{\partial r}\left(\frac{v_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}\right] .
$$

p. 236 In the text immediately above Eq. (5.7-11), change "Eq. (5.7-11)" to "Eq. (5.7-9)."
p. 237 Line 5, "Eq. (A.8-24)" not "Eq. (A.8-25)."
p. 242 Equation (5.9-13d) should be

$$
E^{2} \psi=-(r \sin \theta) w_{\phi} .
$$

p. 249 In the first line of Problem 5-2, part (b), delete "or axisymmetric." That is, the equation in part (b) is valid only for planar flows.
p. 250 In the equation in Problem 5-7(b), " $d \mathbf{r} / d t$ " not " $d \mathbf{r} / d r$."
p. 276 Replace last period by hyphen in labels of Eqs. (6.6-35), (6.6-38), and (6.6-39).
p. 296 In Eq. (7.3-10), " $\partial / \partial r$ " not " $d / d r$."
p. 301 Include a minus sign on the right-hand side of Eq. (7.4-18), such that

$$
v_{\theta}(\theta)=-\frac{U}{\left(\pi^{2} / 4\right)-1}\left[\frac{\pi}{2}\left(\frac{\pi}{2}-\theta\right) \sin \theta-\theta \cos \theta\right] .
$$

p. 338 Three lines above Eq. (8.2-20), " $\partial \tilde{\mathscr{P}} / \partial \tilde{y} "$ not " $\partial \tilde{\mathscr{P}} \partial \tilde{y}$."
p. 338 One line below Eq. (8.2-20), " $O\left(\tilde{\delta}^{2}\right) "$ not " $O(\tilde{\delta})$."
p. 354 Line 11 of text: "Eq. (8.4-33)" not "Eq. (8.3-33)."
p. 360 Line 2, "Eq. (8.5-21)" not Eq. (8.5-22)."
p. 361 Eq. (8.5-28), first symbol in numerator should be " p " not " ρ."
p. 361 Three lines from bottom, add prime to last term in text equation, so that it reads

$$
"\left(f f^{\prime}\right)^{\prime}=f f^{\prime}+\left(f^{\prime}\right)^{2} . "
$$

p. 362 Two lines below Eq. (8.5-41), "Eq. (8.5-41)" not "Eq. (8.5-40)."
p. 365 Problem 8-4(d), line 2, "separation" not "stagnation."
p. 366 Problem 8-6(a), insert minus sign in first equation, such that

$$
\psi(r, z)=-v z^{p} F(\eta)
$$

p. 368 The last differential equation in Problem 8-9(b) should read

$$
G^{\prime \prime}-2 F G-H G^{\prime}=0
$$

p. 427 Equation (10.4-12) should be

$$
\frac{1}{k_{N O}^{(O)}}=\frac{1}{k_{N O}^{(L)}}+\frac{K_{N O}}{k_{N O}^{(G)}}
$$

The text immediately below the equation should read:
"where $K_{N O}$ is the liquid-to-gas concentration ratio at equilibrium (0.047 at $23^{\circ} \mathrm{C}$).
Because the Péclet number is large..."
p. 427 The text below Eq. (10.4-15) should read:
"Together with the small value of $K_{N O}$, this indicates that the mass transfer resistance in the gas is negligible. Thus, the overall mass transfer coefficient essentially equals that in the liquid."
p. 486 In Eq. (12.3-3), $\eta \equiv y / H$ not $\eta \equiv y / W$.
p. 530 In the third line of Example 13.4-1, "(13.3-22)" not "(13.2-22)."
p. 535 Brackets are mismatched in Eq. (13.4-39): there should be a large square (not curved) bracket immediately to the left of the equals sign.
p. 546 The complete list of authors in the Sureshkumar reference is:
"Sureshkumar, R., R. A. Handler, and A. N. Beris."
p. 554 In Eq. (A.2-6), $" \tau-\tau^{t}=\ldots$ not $" \tau=\tau^{t}=\ldots "$
p. 565 In Eqs. (A.5-4) and (A.5-5), " $d S "$ not " $d s . "$
p. 566 In Eq. (A.5-10), "dV" should be in italics (two places).
p. 574 One line below Eq. (A.7-30c), "Eq. (A.7-30)" not "Eq. (A.6-30)."
p. 577 Change the last derivative in Eq. (2) of Table A-4, such that

$$
\boldsymbol{\nabla} \cdot \mathbf{v}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(v_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} .
$$

p. 578 Insert \mathbf{e}_{z} at the end of Eq. (A.8-5), so that it reads

$$
\mathbf{B}=\frac{\partial \mathbf{r}_{s}}{\partial y}=(0) \mathbf{e}_{x}+(1) \mathbf{e}_{y}+\frac{\partial F}{\partial y} \mathbf{e}_{z} .
$$

Deen, Analysis of Transport Phenomena

Errata for Third and Fourth Printings

p. 162 In Eq. $(4.5-73), \sin (n \pi y / b)$ should be $\sin (m \pi y / b)$.
p. 163 In last line of Eq. $(4.5-78)$, $(n \pi)^{2}$ should be $(n \pi / a)^{2}$.
p. 163 In Eq. $(4.5-79),(m \pi)^{2}$ should be $(m \pi / b)^{2}$.
p. 163 Eq. (4.5-81) should read

$$
\frac{d^{2} \Theta_{n m}}{d z^{2}}-\left[(n / a)^{2}+(m / b)^{2}\right] \pi^{2} \Theta_{n n}=0
$$

p. 164 Eq. (4.5-84) should read

$$
\Theta_{n m}(z)=\frac{2 \sqrt{a b}}{n m \pi^{2}}\left[1-(-1)^{n}\right]\left[1-(-1)^{m}\right] \frac{\sinh \left\{\left[(n / a)^{2}+(m / b)^{2}\right]^{1 / 2} \pi z\right\}}{\sinh \left\{\left[(n / a)^{2}+(m / b)^{2}\right]^{1 / 2} \pi c\right\}}
$$

p. 164 Eq. (4.5-85) should read

$$
\Theta(x, y, z)=\frac{16}{\pi^{2}} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \sum_{\substack{m=1 \\ \text { oodd }}}^{\infty} \frac{1}{n m} \frac{\sinh \left\{\left[(n / a)^{2}+(m / b)^{2}\right]^{1 / 2} \pi z\right\}}{\sinh \left\{\left[(n / a)^{2}+(m / b)^{2}\right]^{1 / 2} \pi c\right\}} \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right)
$$

p. 250 In the equation in Problem 5-7(b), " $d \mathbf{r} / d t t^{\prime}$ not " $d \mathbf{r} / d r$."
p. 276 Replace last period by hyphen in labels of Eqs. (6.6-35), (6.6-38), and (6.6-39).
p. 338 Three lines above Eq. (8.2-20), " $\partial \tilde{\mathscr{P}} / \partial \tilde{y} "$ not " $\partial \tilde{\mathscr{P}} \partial \tilde{y}$."
p. 338 One line below Eq. (8.2-20), " $O\left(\tilde{\delta}^{2}\right) "$ not " $O(\tilde{\delta})$."
p. 360 Line 2, "Eq. (8.5-21)" not Eq. (8.5-22)."
p. 361 Eq. (8.5-28), first symbol in numerator should be " p " not " ρ."
p. 361 Three lines from bottom, add prime to last term in text equation, so that it reads $"\left(f f^{\prime}\right)^{\prime}=f f^{\prime}+\left(f^{\prime}\right)^{2} . "$
p. 362 Two lines below Eq. (8.5-41), "Eq. (8.5-41)" not "Eq. (8.5-40)."
p. 365 Problem 8-4(d), line 2, "separation" not "stagnation."
p. 366 Problem 8-6(a), insert minus sign in first equation, such that

$$
\psi(r, z)=-v z^{p} F(\eta)
$$

p. 530 In the third line of Example 13.4-1, "(13.3-22)" not "(13.2-22)."
p. 535 Brackets are mismatched in Eq. (13.4-39): there should be a large square (not curved) bracket immediately to the left of the equals sign.
p. 566 In Eq. (A.5-10), "dV" should be in italics (two places).
p. 574 One line below Eq. (A.7-30c), "Eq. (A.7-30)" not "Eq. (A.6-30)."
p. 578 The last term in Eq. (A.8-5) should read

$$
\frac{\partial F}{\partial y} \mathbf{e}_{z} \text { not } \frac{\partial F}{\partial y \mathbf{e}_{z}} .
$$

Deen, Analysis of Transport Phenomena

Errata for Fifth Printing

p. 366 Problem 8-6(a), insert minus sign in first equation, such that

$$
\psi(r, z)=-v z^{p} F(\eta)
$$

