ENCH 630: Transport Phenomena, Spring 2002

COURSE OUTLINE

Lec [*]	ture Topic
1.	Review of Appendix: vector operations, differential operators Index notation (class notes)
2.	Continuum Hypothesis General conservation equation (integral, differential form)
3.	Student talks on papers Mass conservation
4.	Momentum conservation (integral, differential form) Stress tensor, pressure, viscous stress
5.	Constitutive equation for viscous stress for Newtonian fluids Tensor operations (Appendix) Dynamic pressure
	Example: fully-developed flow between two parallel plates
б.	Energy conservation (integral, differential form) Kinetic energy conservation Thermal energy conservation
7.	Conservation of chemical species (integral, differential form) Similarities between thermal and mass conservation Example: 1D steady conduction/diffusion in rectangular, cylindrical and spherical coordinates.
8.	Boundary Conditions at interfaces: general case Simplifications: plane of symmetry, axisymmetry (cylindrical, spherical) BC's at interfaces: mass, velocity, heat, chemical species Additional BC's for heat/temperature
9.	2D "diffusion" problems: Finite Fourier Transform Example: steady conduction in a square rod
10.	FFT: basic functions for different BC's Additional examples/cases
11.	Review of Perturbation Analysis FFT and Perturbation Analysis (class notes)
12.	Dimensionless conservation equations (mass, momentum, energy, chemical species) Similarities between momentum, energy and chemical species equations Time scales for convective and diffusive transport
13.	Test #1
14.	Review of Test #1 Review of Fluid Dynamics Momentum conservation (integral, differential form) Stress tensor, pressure, viscous stress
15.	Displacement, strain/deformation, vorticity Rigid-body rotation flow Plain strain flow

- 16. Fluid Mechanics at interfaces Review of surface tension and curvature Streamfunction and streamlines Example: 2D pure extensional flow
- 17. Dimensionless analysis for steady and unsteady Navier-Stokes Viscous stress for Newtonian and non-Newtonian fluids
- 18. Exact solutions of Navier-Stokes Example 6.2-4: Liquid film on inclined plane Example: Couette flow
- 19. Similarity method: solid plate moving with constant velocity Example: Flow over an oscillatory plate Lubrication Theory
- 20. Lubrication Theory Case I: shearing Case II: applied pressure gradient Lubrication forces
- 21. Low-Re Flows Examples: rotation and swimming in Stokes flow Streamfunction solution: flow around a sphere
- 22. Streamfunction solution: flow around a sphere (cont.) Assumption of negligible inertia Fluid Dynamics: VIDEO
- 23. Test #2
- 24. Review of Test #2 Inviscid flows Properties, Potential function Example: Flow past a cylinder
- 25. Boundary Layer Theory Blasius problem
- 26. Further discussion on BL: entry length for flow in tube or channel Energy Conservation: equation and BCs
- 27. Dimensionless analysis for Energy Conservation Thermal and Concentration Boundary Layers
- 28. Blasius problem with thermal boundary layer
- 29. Natural convection: Boussinesg approximation Thermal BL near a vertical wall
- 30. Final Test