ENEE 381 Problem Set #1
9/10/02 - due 9/17/02

(1)(380 Review) The current density in a certain region is

\[J = 0.1e^{-10t} \hat{r}/r \]

in spherical coordinates. At \(t=1\mu s \) how much current is crossing the surface \(r=5 \)?

(2) (380 review) A current density \(J = 5\hat{j} \) A/m² exists wherever \(|z| < 2\) m. (a) Find \(H \) for \(|z| < 2 \) and \(|z| > 2 \). Find the magnetic vector potential \(A \) for \(|z| < 2 \) if \(A = 0 \) at the origin.

(3) A circular coil of 100 turns of radius 50mm, total resistance 1 ohm, and no self inductance is rotated about a vertical diameter with uniform angular velocity 100 rad/s in a horizontal magnetic flux of 0.2 Tesla. Calculate the average power needed to keep the coil in motion.

The mean power required to keep the coil in motion is

\[W = n^2 \pi^2 a^4 b^2 \omega^2 /(2R) \]

What is the ohmic power dissipated in the coil?

(4) A small magnetic needle, which is free to turn slowly in a horizontal plane, is placed at the center of the coil in question (3). Calculate the angle with respect to \(B \) at which it reaches equilibrium.

Show that it will set at an angle \(\phi \) to \(B \) where

\[\cot \phi = 4R/(\pi n^2 \mu_o \omega a) \]

(5) A charged particle starts from rest at the origin of coordinates in a region where there is a uniform electric field \(E \) parallel to the \(x \)-axis, and a uniform magnetic flux density \(B \) parallel to the \(z \)-axis. Show that the coordinates of the particle at a time \(t \) later will be

\[x = (E/\omega B)(1 - \cos(\omega t)), \]
\[y = (E/\omega B)(\omega t - \sin \omega t), \]
\[z = 0, \]

where \(\omega = eB/m \). \((E = |E|, B = |B|) \) (This path is called a cycloid.)

(6) Electrons are liberated with zero velocity from the negative plate of a parallel plate capacitor, to which is applied a magnetic flux density \(B \) parallel to the plates. Prove that these electrons will not reach the positive plate if the plate separation \(d \) is greater than \(2mE/eB^2 \), where \(E = |E| \) is the field between the plates.

(7) A plane circular disk of radius \(a \) rotates at a speed of \(2\pi f \) rad/s about an axis through the center of the disk perpendicular to the plane of the disk. There is a uniform magnetic flux \(B \) parallel to the axis of rotation. Prove that the \(emf \) between the center of the disk and its rim is of magnitude \(V = fB\pi a^2 \). \((B = |B|) \)