
Rainbow Tables

ENEE 457

How are Passwords Stored?

• Option 1: Store all passwords in a table in the
clear.

– Problem: If Server is compromised then all
passwords are leaked.

• Option 2: Store only the hash values in a table
in the clear.

– If Server is compromised, hard to recover
password values given hash values.

Background

• Cryptographic hash function 𝐻.
• Given 𝐻 𝑥 it is hard to find 𝑥′ such that
𝐻 𝑥′ = 𝐻(𝑥).

• How hard is it?
– Assume “brute force” is the best attack
– Try all possible passwords 𝑥′ and check whether
𝐻 𝑥′ = 𝐻(𝑥).

• How many possible passwords are there?
– Assume a dictionary of size 𝑁.
– E.g. if passwords are 6 characters (case sensitive

letters, numerals, special characters) then 𝑁 ≈ 956.

Simple Time-Memory Trade Offs

• Can run brute force attack each time to invert
the hash:

– 𝑂(𝑁) time, 𝑂(1) memory

• Can precompute the entire truth table, use a
lookup each time to invert the hash:

– 𝑂(1) time (depending on data structure),
𝑂(𝑁) memory.

A Cryptanalytic Time-Memory
Trade Off

Construction of Table (pre-processing):
• Choose m starting points:

𝑆𝑃1 ≔ 𝑋1,0, … , 𝑆𝑃𝑚 ≔ 𝑋𝑚,0

• Compute 𝑋𝑖,𝑗 = 𝑓 𝑋𝑖,𝑗−1 = 𝑅 𝐻 𝑋𝑖,𝑗−1

• Reduction function 𝑅 is a mapping from the range of the hash to the
dictionary 𝐷.
– E.g. take first six characters of hash output.

• 𝐸𝑃𝑖 = 𝑓
𝑡 𝑆𝑃𝑖

• Save the pairs 𝐸𝑃𝑖 , 𝑆𝑃𝑖 1≤𝑖≤𝑚

A Cryptanalytic Time-Memory
Trade Off

Looking up a hash inverse:

• Given ℎ∗ = 𝐻 𝑚 :

– Apply R to obtain 𝑌1 = 𝑅 ℎ
∗ = 𝑓(𝑚)

– Check if 𝑌1is an endpoint in the table.

– If yes (𝑌1 = 𝐸𝑃𝑖), recompute from 𝑆𝑃𝑖 to find pre-
image.

– Otherwise, compute 𝑌2 = 𝑓 𝑌1 and repeat.

– Do this until reaching 𝑌𝑡 = 𝑓
𝑡 𝑌1 .

Success Probability?

• Heuristic argument—need 𝑚, 𝑡 to each be

approx. 𝑁 to have good success probability.

Problem:

• Not all intermediate values in chains will be
unique.

• “Collisions” → “Merges” of chains

– So after a collision, the chain is useless.

Theorem (Hellman ‘80)

The success probability 𝑃(𝑆) is at least

𝑃 𝑆 ≥
1

𝑁

𝑁− 𝑖𝑡

𝑁

𝑗+1𝑡−1

𝑗=0

𝑚

𝑖=1

Proof of Theorem
Let 𝐴 be the set of distinct entries in the set of 𝑚 chains of length 𝑡. Then
𝑃 𝑆 = 𝐸 𝐴 /𝑁.

Let 𝐼𝑖,𝑗 be the indicator variable set to 1 if position (𝑖, 𝑗) is a “new” value (when
filling in the table row-by-row starting from 𝑖 = 1) and set to 0 otherwise.

𝐸 𝐴 = 𝐸[𝐼𝑖,𝑗]

𝑡−1

𝑗=0

𝑚

𝑖=1

= 𝑃 𝐼𝑖,𝑗 = 1

𝑡−1

𝑗=0

𝑚

𝑖=1

𝑃(𝐼𝑖,𝑗 = 1) ≥ 𝑃 𝐼𝑖,0 = 1 ∧ 𝐼𝑖,1 = 1 ∧⋯∧ 𝐼𝑖,𝑗 = 1

= 𝑃 𝐼𝑖,0 = 1 ⋅ 𝑃 𝐼𝑖,1 = 1 𝐼𝑖,0 = 1 ⋯𝑃 𝐼𝑖,𝑗 = 1 𝐼𝑖,0 = 1⋯𝐼𝑖,𝑗−1 = 1

=
𝑁 − |𝐴𝑖|

𝑁
⋅
𝑁 − 𝐴𝑖 − 1

𝑁
⋯
𝑁 − 𝐴𝑖 − 𝑗

𝑁

≥
𝑁 − 𝑖𝑡

𝑁

𝑗+1

 Where 𝐴𝑖 is the set of distinct elements at the moment we reach the 𝑖-th row.
Clearly, 𝐴𝑖 ≤ 𝑖𝑡.

Parameter Settings

• Set 𝑚, 𝑡 ≔ 𝑁
1

3

• 𝑃 𝑆 ≥ 1/𝑁1/3

Storing ℓ independent tables

• Increase success probability from 𝑃(𝑆) to

1 − 1 − 𝑃 𝑆
ℓ
.

Optimal Parameters

• Set 𝑚, 𝑡, ℓ ≔ 𝑁
1

3

• Require storage of size 𝑁2/3, each lookup
requires 𝑁2/3 computations.

• For our example before,
– Brute force search 956 ≈ 7 × 1011.

– Using Hellman’s method 954 ≈ 8 × 107

– 10−6 second per hash

– ≈ 194 hours (8 days) to invert one hash value vs.
80 seconds.

Rivest’s Modification (‘82)

• Distinguished endpoints
– E.g. the first ten bits are zero

• When given a hash value to invert, can generate a
chain of keys until we find a distinguished point
and only then look it up in the memory.

• Greatly reduces the number of memory lookups

• Allow for loop detection

• Merges can be easily detected since two merging
chains will have the same endpoint.

Rainbow Tables

• Introduced by Philippe Oechslin in ‘03.
– “Making a Faster Cryptanalytic Time-Memory Trade-

Off”

• Modifies Hellman’s method:
– Chains use a successive reduction function for each

point in the chain—”rainbow”.
– Start with reduction function 1 and end with reduction

function 𝑡 − 1.
– For chains of length 𝑡, if a collision occurs, the chance of

it being a merge is only
1

𝑡
 (collision must occur in same

column).

• **Collisions do not necessarily imply merges**

Additional Benefits of Rainbow Tables

• The number of table look-ups is reduced by a
factor of 𝑡 compared to Hellman’s method.

• Merges of chains result in identical endpoints,
so they are detectable and can be eliminated
from table.

• No loops.

• Rainbow chains have constant length (as
opposed to distinguished points).

Success Probability
Success probability of 𝑡 classical tables of size 𝑚 × 𝑡 is approximately
equal to that of a single rainbow table of size 𝑚𝑡 × 𝑡.

Lookup Time
Lookup requires 𝑡2 calculations in classical table

Can be done with 1 + 2 +⋯𝑡 =
𝑡(𝑡−1)

2
 calculations in Rainbow table

Countermeasure Against
Rainbow Tables

• Rainbow Table takes advantage of the fact
that 𝑁 is fairly small.

• Countermeasure: Store 𝐻(𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑||𝑠𝑎𝑙𝑡)

– 𝑠𝑎𝑙𝑡 is public and can be stored along with the
hash

• Attacker would need to precompute a table
for every possible 𝑠𝑎𝑙𝑡 value.

• E.g. 128-bit salt would require 2128 tables.

