Groups for DH Key Exchange

Consider multiplication modulo 23.

23 is a "safe prime" since 23 = 2*11 + 1, where 11 is a prime.

Consider the following cyclic group generated by 2:

Actually, all of 2, 4, 8, 16, 9, 18, 13, 3, 6, 12 are generators and each of them raised to the 11 will be equal to 1 modulo 23.

2 ⁰ mod 23	1
2 ¹ mod 23	2
2 ² mod 23	4
2 ³ mod 23	8
2 ⁴ mod 23	16
2 ⁵ mod 23	$32 \rightarrow 9$
2 ⁶ mod 23	18
2 ⁷ mod 23	$36 \rightarrow 13$
2 ⁸ mod 23	$26 \rightarrow 3$
2 ⁹ mod 23	6
2 ¹⁰ mod 23	12
2 ¹¹ mod 23	$24 \rightarrow 1$

Key Agreement

The key-exchange experiment $KE^{eav}_{A,\Pi}(n)$:

- 1. Two parties holding 1^n execute protocol Π . This results in a transcript *trans* containing all the messages sent by the parties, and a key k output by each of the parties.
- 2. A uniform bit $b \in \{0,1\}$ is chosen. If b = 0 set $\hat{k} \coloneqq k$, and if b = 1 then choose $\hat{k} \in \{0,1\}^n$ uniformly at random.
- 3. A is given *trans* and \hat{k} , and outputs a bit b'.
- 4. The output of the experiment is defined to be 1 if b' = b and 0 otherwise.

Definition: A key-exchange protocol Π is secure in the presence of an eavesdropper if for all ppt adversaries A there is a negligible function neg such that

$$\Pr\left[KE^{eav}_{A,\Pi}(n)=1\right] \leq \frac{1}{2} + neg(n).$$

Diffie-Hellman Key Exchange

FIGURE 10.2: The Diffie-Hellman key-exchange protocol.

Example for the group we saw above with generator g = 2:

CPA Security for PKE

Attacker "wins" if b' = b.

CPA Security: Any efficient attacker wins with probability at most $\frac{1}{2} + negligible$

RSA Encryption

CONSTRUCTION 11.25

Let GenRSA be as in the text. Define a public-key encryption scheme as follows:

- Gen: on input 1^n run GenRSA (1^n) to obtain N, e, and d. The public key is $\langle N, e \rangle$ and the private key is $\langle N, d \rangle$.
- Enc: on input a public key $pk = \langle N, e \rangle$ and a message $m \in \mathbb{Z}_N^*$, compute the ciphertext

 $c := [m^e \mod N].$

• Dec: on input a private key $sk = \langle N, d \rangle$ and a ciphertext $c \in \mathbb{Z}_N^*$, compute the message

 $m := [c^d \bmod N].$

The plain RSA encryption scheme.

RSA Example

$$p = 3, q = 7, N = 21$$

$$\phi(N) = 12$$

$$e = 5$$

$$d = 5$$

 $Enc_{(21,5)}(4) = 4^5 \mod 21 = 16 \mod 21$ $Dec_{21,5}(16) = 16^5 \mod 21 = 4^5 \cdot 4^5 \mod 21$ $= 16 \cdot 16 \mod 21 = 4$

Is Plain-RSA Secure?

- It is deterministic so cannot be secure!
- There are also various additional attacks which we will not cover.

Padded RSA

CONSTRUCTION 11.29

Let GenRSA be as before, and let ℓ be a function with $\ell(n) \leq 2n - 4$ for all n. Define a public-key encryption scheme as follows:

- Gen: on input 1ⁿ, run GenRSA(1ⁿ) to obtain (N, e, d). Output the public key pk = (N, e), and the private key sk = (N, d).
- Enc: on input a public key $pk = \langle N, e \rangle$ and a message $m \in \{0, 1\}^{\|N\| \ell(n) 2}$, choose a random string $r \leftarrow \{0, 1\}^{\ell(n)}$ and interpret $\hat{m} := 1 \|r\| m$ as an element of \mathbb{Z}_N^* . Output the ciphertext

 $c := [\hat{m}^e \mod N].$

Dec: on input a private key sk = ⟨N, d⟩ and a ciphertext c ∈ Z^{*}_N, compute

 $\hat{m} := [c^d \mod N],$

and output the $||N|| - \ell(n) - 2$ least-significant bits of \hat{m} .

The padded RSA encryption scheme.