
Anonymity
With material from:

Dave Levin and Michelle Mazurek

h
tt

p
:/
/w

w
w

.s
o

g
o

s
u

rv
e

y
.c

o
m

/s
ta

ti
c
/s

o
g

o
_

re
s
p
_

im
a
g

e
s
/t
a

t_
re

s
p

_
im

a
g
e

s
/d

e
s
ig

n
im

g
/g

u
a

ra
n

te
e

d
-a

n
o

n
y
m

o
u

s
-s

u
rv

e
y
.p

n
g

http://www.sogosurvey.com/static/sogo_resp_images/tat_resp_images/designimg/guaranteed-anonymous-survey.png

• What is anonymity?

• Dining cryptographers

• Mixnets and Tor

What is anonymity?

• An observer/attacker cannot determine who is

communicating

• Sender anonymity: Cannot distinguish true sender

from set of potential senders

• Receiver anonymity: Cannot distinguish true

receiver from set of potential receivers

Sender anonymity

• Ransom note

• Pass a note when teacher is not looking

• Hang fliers / chalk messages late at night

• etc.

Receiver anonymity

• Dedicate a book/song/etc. to “you know who”

• Codes in classified ads

• Cold war spies: Number stations

• etc.

Quantifying anonymity

• K-anonymity: Can’t distinguish sender/receiver from

pool of K potential senders/receivers

• Most of these real-world examples are not

“provably” anonymous

• We want something with stronger mathematical

properties

Dining cryptographers

h
tt

p
s
:/
/4

.b
p

.b
lo

g
s
p

o
t.
c
o
m

/-
u
q

R
m

-A
G

z
C

x
k
/T

1
v
L

v
e

V
9

W
M

I/
A

A
A

A
A

A
A

A
A

Y
Y

/L
5

C
b

K
s
1

fs
4

M
/s

1
6

0
0

/b
a
b

y
-g

ir
l-
e
a

ti
n

g
.j
p
g

https://4.bp.blogspot.com/-uqRm-AGzCxk/T1vLveV9WMI/AAAAAAAAAYY/L5CbKs1fs4M/s1600/baby-girl-eating.jpg

Problem setup

• From David Chaum (optional reading:

http://www.cs.ucsb.edu/~ravenben/classes/595n-

s07/papers/dcnet-jcrypt88.pdf)

• Three cryptographers having dinner

• Waiter says someone has paid

• Was it one of them? Or a third party?

• Can one of them admit to paying without the others

knowing which one it was?

How to do it

• Each pair of cryptographers flips one coin, hidden

from the 3rd person

• Everyone reports “same” or “different” for the two

coins they can see

• Except, person who paid reports the wrong answer

Why does this work?

A : (b_AB XOR b_AC) XOR m

B : (b_AB XOR b_BC)

C : (b_AC XOR b_BC)

All messages:

(b_AB XOR b_AB) XOR (b_AC XOR b_AC)

XOR (b_BC XOR b_BC) XOR m

= m

Why is this secure?

• Suppose you did not pay

• If the result is 1 (odd “diff”)

• You can tell one of the others is lying

• But without coin they share, can’t tell which

• If result is 0 (even “diff”) then no anonymity issue

• We all know the third party paid

Potential issues

• Unfair coins

• Not executing the protocol honestly

Generalizing the protocol

• More than 3 people:

• Fine with one shared bit per pair of users

• More than 1 bit of data

• Proceed in rounds, one bit per round

• Now we need a shared key (one bit per round)

• What about collisions?

Pros and Cons

• Pro: Not interactive

• After key establishment, no crosstalk by users

• Make systems simpler, proofs easier

• Pro: Collusion is hard

• Generally need everyone conspiring against you

• Cons:

• Collisions / Jamming

• N2 shared keys

Mixnets

Problem setup

• One mail server, M

• Lots of senders (Si) and receivers (Ri)

• One global observer G

• Goal: Send messages without G being able to

determine which sender -> which receiver

Strawman protocol

• Every sender sends a message to M

• Encrypted with M’s pub key

• Indicates intended receiver

• M waits for all messages; shuffles the order

• Send messages encrypted for recipient

Fixing this protocol (1)

• Problem: Mail server reads all messages

• Solution: Encryption layers

• E(kM, Ri || E(kRi, m))

Fixing this protocol (2)

• Problem: What if not everyone has a message

• Mail server might wait forever!

• Solution: Everyone sends every round

• Some is labeled as junk

• Wastes bandwidth/resources on junk

Fixing this protocol (3)

• Problem: Mail server knows who talks to who

• Solution: Chain of mail servers

• …. wrapped in layers

• …. like an onion

Only know your links

M1S

R

M2

M3

M4

I only

know M1

and M3

Encryption layers

M1

S

R

M2

M3

M4

E(k_R,

m)

E(k_M4, R ||

E(k_R, m))

etc.

E(k_M3, M4 ||

E(k_M4, R ||

E(k_R, m)))

etc.

Tor: The Onion Router

• This layers idea is the basis for Tor

• End-to-end path = a circuit

• Default = 3-hop circuits

• Exit node: last hop before destination

• Nodes decide whether to exit, for where

Tor vs. Mix-nets

• Tor doesn’t assume global observer

• Instead, some (small) proportion of Tor nodes are

assumed to be malicious

• Instead, eavesdroppers on a fraction of links

• As a result, does not batch/delay packets

• Which would not be very practical for many use-

cases, e.g. web browsing

• Relies on lots of cover traffic!

Confirmation vs. analysis

• If you suspect Alice is talking to Bob

• Watch both ends

• Confirm via timing, volume

• Tor instead aims to prevent analysis attacks

• Figure out who Alice is talking to

Something is still missing …

• We have disguised senders, what about receivers?

• Goal: Run service X on host D

• Without anyone knowing D runs it

• hidden service

• (aka, dark web)

Hidden services

• Bob creates his service

• Set up circuits to introduction points

• Create a directory listing that maps X to points

• Alice wants to connect

• Set up circuit to rendezvous point R

• Associate with unique token I

• Set up circuit to one of the intro points

• Send message: Please forward R, I to X

https://www.torproject.org/docs/hidden-services.html.en

https://www.torproject.org/docs/hidden-services.html.en

Hidden services (2)

• Connection via R

• Bob sends message containing I to R

• R links the two circuits together (forwarding)

• Alice and Bob can now talk anonymously

https://www.torproject.org/docs/hidden-services.html.en

https://www.torproject.org/docs/hidden-services.html.en

Who knows what?

• Only Bob knows he runs service X

• Intro point knows someone accessed X, but not who

• R knows someone accessed a hidden service, but

not who or what

• Alice knows she accessed X, but not who/where X is

Potential Tor attacks

• Insert malicious relays into the network

• Or compromise legitimate ones

• Generally need multiple to be useful

• DOS on trustworthy routers

• Drive traffic toward your relay

• DOS more generally

• Force relay to do expensive crypto a lot

More Tor problems

• Exit nodes can be blamed for abusive actions

• Limits desire to be an exit node

• Monitor exit nodes for traffic analysis

