
Memory

safety,

continued
With material from Mike

Hicks, Dave Levin and

Michelle Mazurek

http://images.myhardhatstickers.com/img/lg/H/Everybody-Safety-Hard-Hat-Label-HH-0115.gif

http://images.myhardhatstickers.com/img/lg/H/Everybody-Safety-Hard-Hat-Label-HH-0115.gif

Today’s agenda

• Other memory exploits

• Programming Language-level approach to

achieving memory safety

Other memory exploits

Heap overflow

• Stack smashing overflows a stack-allocated buffer

• You can also overflow a buffer allocated by
malloc, which resides on the heap

• What data gets overwritten?

Heap overflow
typedef struct _vulnerable_struct {

char buff[MAX_LEN];

int (*cmp)(char*,char*);

} vulnerable;

int foo(vulnerable* s, char* one, char* two)

{

strcpy(s->buff, one);

strcat(s->buff, two);

return s->cmp(s->buff, "file://foobar");

}

must have strlen(one)+strlen(two) < MAX_LEN

or we overwrite s->cmp

copy one into buff
copy two into buff

Heap overflow variants

• Overflow into adjacent objects

• Where buff is not co-located with a function pointer, but is allocated near

one on the heap

• Overflow heap metadata

• Hidden header just before the pointer returned by malloc

• Flow into that header to corrupt the heap itself

Integer overflow
void vulnerable()

{

char *response;

int nresp = packet_get_int();

if (nresp > 0) {

response = malloc(nresp*sizeof(char*));

for (i = 0; i < nresp; i++)

response[i] = packet_get_string(NULL);

}

• What if we set nresp =1073741824?

• Assume sizeof(char*) = 4

• How many bytes are malloc’d?

• The for loop now creates an overflow!

Stale memory

• A dangling pointer bug occurs when a pointer is

freed, but the program continues to use it

• An attacker can arrange for the freed memory to

be reallocated and under his control

• When the dangling pointer is dereferenced, it will

access attacker-controlled data

Stale memory

struct foo { int (*cmp)(char*,char*); };

struct foo *p = malloc(…);

free(p);

. . .

q = malloc(…) //reuses memory

*q = 0xdeadbeef; //attacker control

. . .

p->cmp(“hello”,”hello”); //dangling ptr

• When the dangling pointer is dereferenced, it will access attacker

Format string

vulnerabilities

Formatted I/O

• Recall: C’s printf family of functions

• Format specifiers, list of arguments

• Specifier indicates type of argument (%s, %i, etc.)

• Position in string indicates argument to print

void print_record(int age, char *name)

{

printf("Name: %s\tAge: %d\n",name,age);

}

void vulnerable()

{

char buf[80];

if(fgets(buf, sizeof(buf), stdin)==NULL)

return;

printf(buf);

}

void safe()

{

char buf[80];

if(fgets(buf, sizeof(buf), stdin)==NULL)

return;

printf("%s",buf);

}

What’s the difference?

Attacker controls the format string

caller’s

stack frame

printf’s stack frame

printf implementation

int i = 10;

printf("%d %p\n", i, &i);

0xffffffff0x00000000

&i10%eip%ebp &fmt…

• printf takes a variable number of arguments

• Doesn’t know where the stack frame “ends”

• Keeps reading from stack until out of format specifiers

void vulnerable()

{

char buf[80];

if(fgets(buf, sizeof(buf), stdin)==NULL)

return;

printf(buf);

}

caller’s

stack frame

0xffffffff0x00000000

%eip%ebp &fmt…

" %d %x"

Format string vulnerabilities

• printf(" 100% dinosaur ");

• Prints stack entry 4 byes above saved %eip

• printf(" %s ");

• Prints bytes pointed to by that stack entry

• printf(" %d %d %d %d ..");

• Prints a series of stack entries as integers

• printf(" %08x %08x %08x %08x ..");

• Same, but nicely formatted hex

• printf(" 100% not vulnerable! ")

• WRITES the number 3 to address pointed to by stack entry

Why is this a buffer overflow?

• We should think of this as a buffer overflow in the

sense that

• The stack itself can be viewed as a kind of buffer

• Size of that buffer is determined by the number

and size of the arguments passed to a function

• Providing a bogus format string thus induces the

program to overflow that “buffer”

Stepping back

What do these attacks have in common?

1. The attacker is able to control some data that is

used by the program

2. The use of that data permits unintentional access

to some memory area in the program

• Past a buffer

• To arbitrary positions on the stack / in the heap

Memory Safety

https://diarrheapolice.files.wordpress.com/2015/08/elephant-bicycle-never-forget.png?w=590&h=334

https://diarrheapolice.files.wordpress.com/2015/08/elephant-bicycle-never-forget.png?w=590&h=334

The Basics

A memory safe program execution:

1. Only creates pointers through standard means

• p = malloc(…), or p = &x, or p = &buf[5], etc.

2. Only uses a pointer to access memory that
“belongs” to that pointer

Combines two ideas:

temporal safety and spatial safety

Spatial safety

• View pointers as capabilities: triples (p,b,e)

• p is the actual pointer (current address)

• b is the base of the memory region it may access

• e is the extent (bounds) of that region (count)

• Access allowed iff b ≤ p ≤ (e-sizeof(typeof(p)))

• Operations:

• Pointer arithmetic increments p, leaves b and e alone

• Using &: e determined by size of original type

Examples

int x; // assume sizeof(int)=4

int *y = &x; // p = &x, b = &x, e = &x+4

int *z = y+1; // p = &x+4, b = &x, e = &x+4

*y = 3; // OK: &x ≤ &x ≤ (&x+4)-4

*z = 3; // Bad: &x ≤ &x+4 ≤ (&x+4)-4

struct foo f = { “cat”, 5 };

char *y = &f.buf; // p = b = &f.buf, e = &f.buf+4

y[3] = ‘s’; // OK: p = &f.buf+3 ≤ (&f.buf+4)-1

y[4] = ‘y’; // Bad: p = &f.buf+4 ≤ (&f.buf+4)-1

struct foo {

char buf[4];

int x;

};

Visualized example
struct foo {

int x;

int y;

char *pc;

};

struct foo *pf = malloc(...);

pf->x = 5;

pf->y = 256;

pf->pc = "before";

pf->pc += 3;

int *px = &pf->x;

p b epf: p b epx:

p b e

b e f o r e ⍉

5 256

No buffer overflows

• A buffer overflow violates spatial safety

• Overrunning bounds of source and/or destination
buffers implies either src or dst is illegal

void copy(char *src, char *dst, int len)

{

int i;

for (i=0;i<len;i++) {

*dst = *src;

src++;

dst++;

}

}

No format string attacks

• The call to printf dereferences illegal pointers

• View the stack as a buffer defined by the number and
types of the arguments it provides

• The extra format specifiers construct pointers beyond the
end of this buffer and dereference them

• Essentially a kind of buffer overflow

char *buf = “%d %d %d\n”;

printf(buf);

Temporal safety

• Violated when trying to access undefined memory

• Spatial safety assures it was to a legal region

• Temporal safety assures that region is still in play

• Memory regions either defined or undefined

• Defined means allocated (and active)

• Undefined means unallocated, uninitialized, or deallocated

• Pretend memory is infinitely large, no reuse

No dangling pointers

• Accessing a freed pointer violates temporal safety

The memory dereferenced no longer belongs to p.

• Accessing uninitialized pointers is similarly not OK:

int *p = malloc(sizeof(int));

*p = 5;

free(p);

printf(“%d\n”,*p); // violation

int *p;

*p = 5; // violation

Integer overflows?

• Integer overflows are themselves allowed

• But can’t become illegal pointers

• Integer overflows often enable buffer overflows

int f() {

unsigned short x = 65535;

x++; // overflows to become 0

printf(“%d\n”,x); // memory safe

char *p = malloc(x); // size-0 buffer!

p[1] = ‘a’; // violation

}

For more on memory safety, see

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

How to get memory safety?

• The easiest way to avoid all of these vulnerabilities

is to use a memory-safe language

• Modern languages are memory safe

• Java, Python, C#, Ruby

• Haskell, Scala, Go, Objective Caml, Rust

• In fact, these languages are type safe, which is

even better (more on this shortly)

Memory safety for C

• C/C++ are here to stay.

• You can write memory safe programs with them

• But the language provides no guarantee

• Compilers could add code to check for violations

• Out-of-bounds: immediate failure (Java ArrayBoundsException)

• This idea has been around for more than 20 years.

Performance has been the limiting factor.

• Work by Jones and Kelly in 1997 adds 12x overhead

• Valgrind memcheck adds 17x overhead

Research progress

• CCured (2004), 1.5x slowdown

• But no checking in libraries

• Compiler rejects many safe programs

• Softbound/CETS (2010): 2.16x slowdown

• Complete checking, highly flexible

• Intel MPX hardware (2015 in Linux)

• Hardware support to make checking faster

ccured

https://software.intel.com/en-us/blogs/2013/07/22/intel-memory-

protection-extensions-intel-mpx-support-in-the-gnu-toolchain

https://software.intel.com/en-us/blogs/2013/07/22/intel-memory-protection-extensions-intel-mpx-support-in-the-gnu-toolchain

Type Safety
https://a.dilcdn.com/bl/wp-content/uploads/sites/8/2014/02/typewriterfont.jpg

Type safety
• Each object is ascribed a type (int, pointer to int,

pointer to function), and

• Operations on the object are always compatible with

the object’s type

• Type safe programs do not “go wrong” at run-time

• Type safety is stronger than memory safety

int (*cmp)(char*,char*);

int *p = (int*)malloc(sizeof(int));

*p = 1;

cmp = (int (*)(char*,char*))p;

cmp(“hello”,”bye”); // crash!

Memory safe,

NOT type safe

Aside: Dynamic Typing

• Dynamically typed languages

• Don’t require type declaration

• e.g., Ruby and Python

• Can be viewed as type safe

• Each object has one type: Dynamic

• Each operation on a Dynamic object is permitted, but

may be unimplemented

• In this case, it throws an exception

• Checked at runtime not compile time!

Types for Security

• Use types to enforce security property invariants

• Invariants about data’s privacy and integrity

• Enforced by the type checker

• Example: Java with Information Flow (JIF)

int{Alice, Bob} x;

int{Alice, Bob, Chuck} y;

x = y; //OK: policy on x is stronger

y = x; //BAD: policy on y is weaker

http://www.cs.cornell.edu/jif

Types have

security labels

that govern

information flow

http://www.cs.cornell.edu/jif

Why not type safety?

• C/C++ often chosen for performance reasons

• Manual memory management

• Tight control over object layouts

• Interaction with low-level hardware

• Enforcement of type safety is typically expensive

• Garbage collection avoids temporal violations

• Can be as fast as malloc/free, often uses much more memory

• Bounds and null-pointer checks avoid spatial violations

• Hiding representation may inhibit optimization

• Many C-style casts, pointer arithmetic, & operator, not allowed

A new hope?

• Many applications do not need C/C++

• Or the risks that come with it

• New languages aim to provide similar features to

C/C++ while remaining type safe

• Google’s Go, Mozilla’s Rust, Apple’s Swift

