
Memory 
safety, 

continued
With material from Mike Hicks,

Dave Levin and Michelle Mazurek

http://images.myhardhatstickers.com/img/lg/H/Everybody-Safety-Hard-Hat-Label-HH-0115.gif



Today
• Return Oriented Programming

• Yet another type of buffer overflow attack

• Bypasses countermeasures discussed last time

• Control Flow Integrity

• General countermeasure against buffer overflow attack

• Can detect if logical flow of program is interrupted

• Other types of overflow attacks



Return oriented 
programming (ROP)



Return-oriented Programming 

• Introduced by Hovav Shacham, CCS 2007

• Idea: rather than use a single (libc) function to run 
your shellcode, string together pieces of existing 
code, called gadgets, to do it instead

• Challenges

• Find the gadgets you need
• String them together



Approach

• Gadgets are instruction groups that end with ret

• Stack serves as the code
• %esp = program counter

• Gadgets invoked via ret instruction

• Gadgets get their arguments via pop, etc.

• Also on the stack



Simple example

0x17f: pop %edx
ret

550x17f0x17f

0xffffffff0x00

TextText

mov %edx, 5

…

goal: put 5 into edx
%eip

%edx 5
next

gadget
next

gadget

%esp

Gadget

“Instructions”

“program counter”

(ret)



0xffffffff0x00

0x4040x404 …………55…

%eax

%ebx

…

%esp

0x17f: mov %eax, [%esp]
mov %ebx, [%esp+8]
mov [%ebx], %eax

%eip

0x404

TextText

5

0x404

5

Code sequence (no ROP)



0xffffffff0x00

0x4040x4040x20d0x20d 0x21a0x21a55…

%eax

%ebx

…

%esp

0x17f: pop %eax
ret

…
0x20d: pop %ebx 

ret
…
0x21a: mov [%ebx], %eax

%eip

0x404

TextText

5

0x404

5

Equivalent ROP sequence



Image by Dino Dai Zovi 



Whence the gadgets?
• How can we find gadgets to construct an exploit?

• Automated search: look for ret instructions, work 
backwards 

• Cf. https://github.com/0vercl0k/rp

• Are there sufficient gadgets to do anything interesting?

• For significant codebases (e.g., libc), Turing complete

• Especially true on x86’s dense instruction set

• Schwartz et al. (USENIX Sec’11) automated gadget 
shellcode creation, Turing complete not required



Control Flow 
Integrity



Behavior-based detection
• Stack canaries, non-executable data, ASLR make standard 

attacks harder / more complicated, but may not stop them

• Idea: observe the program’s behavior — is it doing what 
we expect it to?

• If not, might be compromised

• Challenges

• Define “expected behavior”

• Detect deviations from expectation efficiently

• Avoid compromise of the detector



Control-flow Integrity (CFI)
• Define “expected behavior”:

• Detect deviations from expectation efficiently

• Avoid compromise of the detector

Reference: 
http://www.cs.columbia.edu/~suman/secure_sw_devel/p34
0-abadi.pdf

Control flow graph (CFG)



Call Graph

sort2
sort

lt

gt

Which functions call other functions

bool lt(int x, int y) {
return x<y;

}
bool gt(int x, int y) {

return x>y;
}

sort2(int a[], int b[], int len)
{

sort(a, len, lt);
sort(b, len, gt);

}



Control Flow Graph
bool lt(int x, int y) {

return x<y;
}
bool gt(int x, int y) {

return x>y;
}

sort2(int a[], int b[], int len)
{

sort(a, len, lt);
sort(b, len, gt);

}

sort2
sort

lt

gt

Break into basic blocks
Distinguish calls from returns



CFI: Compliance with CFG

• Compute the call/return CFG in advance

• During compilation, or from the binary

• Monitor the control flow of the program and ensure that it 
only follows paths allowed by the CFG

• Observation: Direct calls need not be monitored

• Assuming the code is immutable, the target address 
cannot be changed

• Therefore: monitor only indirect calls

• jmp, call, ret with non-constant targets



bool lt(int x, int y) {
return x<y;

}
bool gt(int x, int y) {

return x>y;
}

sort2(int a[], int b[], int len)
{

sort(a, len, lt);
sort(b, len, gt);

}

Control Flow Graph

sort2
sort

lt

gt

Direct calls (always the same target)



Control Flow Graph

sort2
sort

lt

gt

Indirect transfer (call via register, or ret)

bool lt(int x, int y) {
return x<y;

}
bool gt(int x, int y) {

return x>y;
}

sort2(int a[], int b[], int len)
{

sort(a, len, lt);
sort(b, len, gt);

}



Control-flow Integrity (CFI)

• Define “expected behavior”:

• Detect deviations from expectation efficiently

• Avoid compromise of the detector

Control flow graph (CFG)

In-line reference monitor (IRM)



In-line Monitor
• Implement the monitor in-line, as a program 

transformation

• Insert a label just before the target address of an 
indirect transfer

• Insert code to check the label of the target at 
each indirect transfer 

• Abort if the label does not match

• The labels are determined by the CFG



Simplest labeling

sort2
sort

lt

gtlabel L

label L

label L
label L

label L

Use the same label at all targets: label 
just means it’s OK to jump here.

What could go wrong?



Simplest labeling

• Can’t return to functions that aren’t in the graph

• Can return to the right function in the wrong order 

sort2
sort

lt

gtlabel L

label L

label L
label L

label L

system

ok
…
ok
…



Detailed labeling
sort2

sort
lt

gtlabel L

label L

label M
label N

label M

• All potential destinations of same source must match
• Return sites from calls to sort must share a label (L)
• Call targets gt and lt must share a label (M)
• Remaining label unconstrained (N)

Prevents more abuse than simple labels, 
but still permits call from site A to return to site B

ok
…
ok
…



Classic CFI instrumentation
Before 

CFI

After 
CFI



Classic CFI instrumentation



Efficient?
• Classic CFI (2005) imposes 16% overhead on 

average, 45% in the worst case

• Works on arbitrary executables

• Not modular (no dynamically linked libraries)

• Modular CFI (2014) imposes 5% overhead on 
average, 12% in the worst case

• C only 

• Modular, with separate compilation

• http://www.cse.lehigh.edu/~gtan/projects/upro/



Control-flow Integrity (CFI)

• Define “expected behavior”:

• Detect deviations from expectation efficiently

• Avoid compromise of the detector

Control flow graph (CFG)

In-line reference monitor (IRM)

Sufficient randomness, immutability



Can we defeat CFI?

• Inject code that has a legal label

• Won’t work because we assume non-executable data

• Modify code labels to allow the desired control flow

• Won’t work because the code is immutable

• Modify stack during a check, to make it seem to 
succeed

• Won’t work because adversary cannot change 
registers into which we load relevant data



CFI Assurances
• CFI defeats control flow-modifying attacks

• Remote code injection, ROP/return-to-libc, etc.

• But not manipulation of control-flow that is allowed by the 
labels/graph

• Called mimicry attacks

• The simple, single-label CFG is susceptible to these

• Nor data leaks or corruptions

• Heartbleed would not be prevented

• Nor the authenticated overflow

• Which is allowed by the graph

void func(char *arg1)
{

int authenticated = 0;
char buffer[4];
strcpy(buffer, str);
if(authenticated) { ...

}



Secure?

• MCFI can eliminate 95.75% of ROP gadgets on 
x86-64 versions of SPEC2006 benchmark suite

• By ruling their use non-compliant with the CFG

• Average Indirect-target Reduction (AIR) > 99%

• Essentially, the percentage of possible targets of 
indirect jumps that CFI rules out


