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1. Motivation
• “Anonymous” datasets (with PII removed) have been 

connected to specific individuals. 

• AOL search histories.

• Netflix prize.

• Human genetic datasets.

• All of these cases involved auxiliary information.

• A technology is required to give incentives (or at least to 
remove disincentives) to contribute to these datasets.

• “First, do no harm.”
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Statistical databases
• The purpose of a statistical database is to inform. 

• By definition, these databases will be exposed to users.

• A user can, even with good intentions, become an attacker.

The goal is to reveal information, so the right 
definition of privacy is not obvious.
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Dalenius’s Desideratum
An attempt at a workable definition of privacy in this setting:

“Anything that can be learned about a 
respondent from the statistical database should 

be learnable without access to the database.”

Naturally relates to semantic security in cryptosystems.
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Dalenius’s Desideratum
• Terry Gross is two inches shorter than the average 

Lithuanian woman `DB allows computing average height of 
a Lithuanian woman `This DB breaks Terry Gross’s privacy 
according to this definition… even if her record is not in the 
database! 

• This has been extended to a general proof of the inadequacy 
of this definition.

• This definition fails as it punishes the database for revealing 
information, which is the purpose of a statistical database.
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2. Past attempts

• Large query sets: Forbid queries about specific individuals.

• Non-specific queries can still reveal information.

• Query auditing: Determine by analysis if a set of queries will 
reveal information about individuals.

• Computationally infeasible in general [J. Kleinberg et al.].

• Rejecting a query leaks information.

• Subset sampling: Release only a subset of the dataset.

• Punishes individuals in the subsample
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2. Past attempts

• Input perturbation: Randomize the data at collection time. 
“Randomize once.”

• Does not work with complex data.

• Output perturbation: Add random noise to query responses.

• If done naively, easy to defeat.
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Two problems

• We do not have a good definition of privacy in this setting.

• How can we make progress without one?

• Past attempts to achieve some kind of privacy did not work.
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Blatant non-privacy

A system is blatantly non-private if an adversary 
can construct a replica database that matches the 
real database in 99% of its entries.

The adversary gets at most 1% wrong.

Of past approaches, adding random noise did not work if done 
naively, but perhaps we can fix it.

How much noise must be added by our database mechanism to 
avoid blatant non-privacy?
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Theorem 1: Let M be a mechanism that adds noise bounded by 
E to each query. Then there exists an adversary that can 
reconstruct the database to within 4E positions.
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To avoid blatant non-privacy, we must add noise bounded by 
n/400. A bound of n/401 or lower is provably non-private.



Noise and the “noisy table”
• Our analysis demonstrates that we cannot release a static 

“noisy table” that can be used to get very accurate statistics 
about the real data.

• A table that can give accurate statistics can be attacked.

• A table that cannot be attacked cannot give accurate statistics.

• This yields a key conclusion: we can only achieve both 
privacy and accurate statistics with an interactive database 
mechanism.
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Privacy goal
• We considered already Dalenius’s definition of privacy and 

saw that it is inadequate.

• Because statistical databases are intended to reveal 
information and because we want to ensure participation in 
these databases, we require a special definition of privacy.

Our goal is to minimize the increased risk to an 
individual incurred by joining or leaving the 

database.

This goal leads us directly to differential privacy.
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Differential privacy
• It should not harm you or help you as an individual to enter 

or to leave the dataset. 

• To ensure this property, we need a mechanism whose 
output is nearly unchanged by the presence or absence of a 
single respondent in the database.

• In constructing a formal approach, we concentrate on pairs 
of databases (D, D’) differing on only one row, with one a
subset of the other and the larger database containing a 
single additional row.
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Differential privacy
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Differential privacy
• An equivalent expression of this idea is given as a ratio 

bounded by R:

• The closer R is to 1, or ε to 0, the more difficult it will be for 
an attacker to determine an individual’s data.

• ε is a publicly known characteristic of our database. It 
defines the level of privacy maintained and it informs users 
of the amount of error to expect in the responses it yields.
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Differential privacy
• An important property of this definition is that any output 

with zero probability is invalid for all databases.

• An output with a probability of zero in a given database must 
have a probability of zero in both neighboring databases and 
by induction, in any other database as well.

• It immediately follows that sub-sampling fails to implement 
differential privacy. 

• A row cannot be present in a sub-sample if that person has 
previously left the dataset.

• With this definition in hand, we can attempt an 
implementation.
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Noise properties
• We know we can add noise to query responses to disguise 

the true contents of the database.

• We know the level of disguise required for differential 
privacy. 

• What distribution should we employ to generate this noise?
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Simple case
“How many rows in the database satisfy P?”

Adding or removing a row can only change the answer by 1.

To build a differentially private mechanism for answering this 
query, we add to the response random noise drawn from a 
distribution with the property:

We make this requirement so that the noise itself does not leak 
information beyond our chosen ε.
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General case
• We must be able to handle vector-valued queries. 

• To do this, we must consider the sensitivity of the function 
that will generate the response. 

• In the simple case, the sensitivity was 1.

• The sensitivity defines the difference that the noise must 
hide.
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Laplace distribution
• We generate noise using the Laplace distribution.

• The Laplace distribution, denoted Lap(b), is defined with parameter b and has 
density function:

• Taking b = 1/ε we have immediately that the density is proportional to e-ε|z|. 

• This distribution has its highest density at 0.

• For any z, z’ such that |z - z’|≤ 1, the density at z is at most eε times the 
density at z’, satisfying the condition we outlined in the simple case.

• The distribution is symmetric about 0.

• The distribution flattens as ε decreases. More likely to deviate from the true 
value.
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Laplace distribution

28Wikipedia, Creative Commons license



Final theorem
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In this figure, the distribution on the outputs, show in gray, is 
centered at the true answer of 100, where Δf = 1 and ε= ln 2. In 
orange is the same distribution where the true answer is 101.
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Sequence of queries

• We allow the quality of each answer to deteriorate with the 
sum of sensitivities of the queries, maintaining ε-differential 
privacy.

• A complex query need only be penalized by its aggregate 
sensitivity.  This may be surprisingly small.

• Example: the number of 2-bit rows whose entries are both 1 
has sensitivity 1 despite involving 2 bits per row.
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Histogram queries
• Histogram queries are an example of the aforementioned 

principle.

• The addition or removal of a row can only change the count 
in a bucket by 1.

• This means we need only perturb the count in each bucket 
according to Lap(Δf /ε) = Lap(1 /ε).

• The cost in noise of a query has the desired property: it 
increases when the query threatens individual privacy and 
shrinks when the query concerns an aggregate value.
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Histogram queries
“This algorithm is a primitive that can be applied to any 
‘histogram’ query – that is, one asking how many people fall 
into each of several mutually exclusive categories, such as first 
names”

“When [Adam] Smith told Dwork about this insight in the early 
days of differential privacy research, ‘something inside me 
went, “Wow!”’ Dwork said. ‘I realized that we could exploit 
the structure of a query or computation to get much greater 
accuracy than I had realized.’” 

- Scientific American
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Sensitivity analysis
• To employ this technology for practical data analysis, we 

rely on the observation that standard data mining queries 
can be implemented as noisy sums, allowing them to be 
broken into a series of steps with known sensitivity, giving 
an aggregate sensitivity for the overall query.

• Even queries that are challenging to describe by sensitivity 
can be performed with ε-differential privacy maintained.

• Much of the work done in differential privacy is in the 
creation of algorithms with low noise cost.
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Objections
1. Do enough queries and we lose privacy.

Does this make sense? We just stop using the data?

2. This work presumes a static dataset. 
What happens to the analysis if the data is changing?

3. Are there static parameters of the database that should be hidden as 
well? 

4. Using differential privacy does not stop many other forms of 
information leakage. 

5. Whoever does the calculation has the data. 

6. How limited is the query model? 
The standard database model does not fit with differential privacy.
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Query model
• If it is natural to put things in terms of a histogram, then it is 

natural to query.

• Absurd example from the Scientific American article:

“If you wanted to generate a list of the top 100 baby names for 
2012, for example, you could ask a series of questions of the 
form, “How many babies were given names that start with A?” 
(or Aa, Ab or Ac), and work your way through the 
possibilities.”
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Query model
“’One of the early results in machine learning is that almost 
everything that is possible in principle to learn can be learned 
through counting queries,’ [Aaron] Roth said. ‘Counting queries 
are not isolated toy problems, but a fundamental primitive’ —
that is, a building block from which many more complex 
algorithms can be built.”

• This does not seem like a query model most people can use 
naturally.

• Perhaps Dwork defined away this problem by focusing on 
statistical databases.
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Mr. Burns

• We can learn about expected 
power consumption over a 
population.

• But we cannot learn about an 
employee’s name.
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Suggested Reading
• (a few practical options)

• CryptDB: Protecting Confidentiality with Encrypted Query 
Processing. Raluca Ada Popa, Catherine M. S. Redfield, 
Nickolai Zeldovich, and Hari Balakrishnan. Proceedings of 
the 23rd ACM SOSP, Cascais, Portugal, October 2011.

• Fully Homomorphic Encryption. Wikipedia page 
maintained by Craig Genty and others.

• Fully Homomorphic Encryption with Relatively Small Key 
and Ciphertext Sizes. In PKC 2010, LNCS volume 6056, 
pages 420-443. Springer, 2010.
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CryptDB?
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CryptDB
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CryptDB
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CryptDB performance
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Homomorphic encryption
• Computation done on encrypted values is reflected in the 

unencrypted values.

• Known since the 1970s.

• Key breakthrough: an encryption system that is 
homomorphic under both addition and multiplication and is 
secure.

• Due to Craig Gentry, announced in 2009. 

• 2014 MacArthur Fellow, has a J.D., and worked as a lawyer!

• This allows for homomorphic computation of any Boolean 
circuit.
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Homomorphic encryption
“Unfortunately -- you knew that was coming, right? --
Gentry’s scheme is completely impractical. It uses something 
called an ideal lattice as the basis for the encryption scheme, and 
both the size of the ciphertext and the complexity of the 
encryption and decryption operations grow enormously with 
the number of operations you need to perform on the ciphertext 
-- and that number needs to be fixed in advance. And 
converting a computer program, even a simple one, into a 
Boolean circuit requires an enormous number of operations. 
These aren't impracticalities that can be solved with some 
clever optimization techniques and a few turns of Moore's 
Law; this is an inherent limitation in the algorithm.”

- Bruce Schneier
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