
1

Based on slides from: Ken Birman

A firm foundation for
private data analysis

Cynthia Dwork

2

“A firm foundation”

1. Motivation: privacy with statistical databases.

2. Past attempts at privacy.

3. Creating privacy using noise.

4. Defining differential privacy.

5. Achieving differential privacy.

6. Properties of differentially private queries.

3

“A firm foundation”

1. Motivation: privacy with statistical databases.

2.

3.

4.

5.

6.

4

1. Motivation
• “Anonymous” datasets (with PII removed) have been

connected to specific individuals.

• AOL search histories.

• Netflix prize.

• Human genetic datasets.

• All of these cases involved auxiliary information.

• A technology is required to give incentives (or at least to
remove disincentives) to contribute to these datasets.

• “First, do no harm.”

5

Statistical databases
• The purpose of a statistical database is to inform.

• By definition, these databases will be exposed to users.

• A user can, even with good intentions, become an attacker.

The goal is to reveal information, so the right
definition of privacy is not obvious.

6

Dalenius’s Desideratum
An attempt at a workable definition of privacy in this setting:

“Anything that can be learned about a
respondent from the statistical database should

be learnable without access to the database.”

Naturally relates to semantic security in cryptosystems.

7

Dalenius’s Desideratum
• Terry Gross is two inches shorter than the average

Lithuanian woman `DB allows computing average height of
a Lithuanian woman `This DB breaks Terry Gross’s privacy
according to this definition… even if her record is not in the
database!

• This has been extended to a general proof of the inadequacy
of this definition.

• This definition fails as it punishes the database for revealing
information, which is the purpose of a statistical database.

8

“A firm foundation”

1.

2. Past attempts at privacy.

3.

4.

5.

6.

9

2. Past attempts

• Large query sets: Forbid queries about specific individuals.

• Non-specific queries can still reveal information.

• Query auditing: Determine by analysis if a set of queries will
reveal information about individuals.

• Computationally infeasible in general [J. Kleinberg et al.].

• Rejecting a query leaks information.

• Subset sampling: Release only a subset of the dataset.

• Punishes individuals in the subsample

10

2. Past attempts

• Input perturbation: Randomize the data at collection time.
“Randomize once.”

• Does not work with complex data.

• Output perturbation: Add random noise to query responses.

• If done naively, easy to defeat.

11

“A firm foundation”

1.

2.

3. Creating privacy using noise.

4.

5.

6.

12

Two problems

• We do not have a good definition of privacy in this setting.

• How can we make progress without one?

• Past attempts to achieve some kind of privacy did not work.

13

Blatant non-privacy

A system is blatantly non-private if an adversary
can construct a replica database that matches the
real database in 99% of its entries.

The adversary gets at most 1% wrong.

Of past approaches, adding random noise did not work if done
naively, but perhaps we can fix it.

How much noise must be added by our database mechanism to
avoid blatant non-privacy?

14

Theorem 1: Let M be a mechanism that adds noise bounded by
E to each query. Then there exists an adversary that can
reconstruct the database to within 4E positions.

15

To avoid blatant non-privacy, we must add noise bounded by
n/400. A bound of n/401 or lower is provably non-private.

Noise and the “noisy table”
• Our analysis demonstrates that we cannot release a static

“noisy table” that can be used to get very accurate statistics
about the real data.

• A table that can give accurate statistics can be attacked.

• A table that cannot be attacked cannot give accurate statistics.

• This yields a key conclusion: we can only achieve both
privacy and accurate statistics with an interactive database
mechanism.

16

Privacy goal
• We considered already Dalenius’s definition of privacy and

saw that it is inadequate.

• Because statistical databases are intended to reveal
information and because we want to ensure participation in
these databases, we require a special definition of privacy.

Our goal is to minimize the increased risk to an
individual incurred by joining or leaving the

database.

This goal leads us directly to differential privacy.

17

“A firm foundation”

1.

2.

3.

4. Defining differential privacy.

5.

6.

18

Differential privacy
• It should not harm you or help you as an individual to enter

or to leave the dataset.

• To ensure this property, we need a mechanism whose
output is nearly unchanged by the presence or absence of a
single respondent in the database.

• In constructing a formal approach, we concentrate on pairs
of databases (D, D’) differing on only one row, with one a
subset of the other and the larger database containing a
single additional row.

19

Differential privacy

20

Differential privacy
• An equivalent expression of this idea is given as a ratio

bounded by R:

• The closer R is to 1, or ε to 0, the more difficult it will be for
an attacker to determine an individual’s data.

• ε is a publicly known characteristic of our database. It
defines the level of privacy maintained and it informs users
of the amount of error to expect in the responses it yields.

21

Differential privacy
• An important property of this definition is that any output

with zero probability is invalid for all databases.

• An output with a probability of zero in a given database must
have a probability of zero in both neighboring databases and
by induction, in any other database as well.

• It immediately follows that sub-sampling fails to implement
differential privacy.

• A row cannot be present in a sub-sample if that person has
previously left the dataset.

• With this definition in hand, we can attempt an
implementation.

22

“A firm foundation”

1.

2.

3.

4.

5. Achieving differential privacy.

6.

23

Noise properties
• We know we can add noise to query responses to disguise

the true contents of the database.

• We know the level of disguise required for differential
privacy.

• What distribution should we employ to generate this noise?

24

Simple case
“How many rows in the database satisfy P?”

Adding or removing a row can only change the answer by 1.

To build a differentially private mechanism for answering this
query, we add to the response random noise drawn from a
distribution with the property:

We make this requirement so that the noise itself does not leak
information beyond our chosen ε.

25

General case
• We must be able to handle vector-valued queries.

• To do this, we must consider the sensitivity of the function
that will generate the response.

• In the simple case, the sensitivity was 1.

• The sensitivity defines the difference that the noise must
hide.

26

Laplace distribution
• We generate noise using the Laplace distribution.

• The Laplace distribution, denoted Lap(b), is defined with parameter b and has
density function:

• Taking b = 1/ε we have immediately that the density is proportional to e-ε|z|.

• This distribution has its highest density at 0.

• For any z, z’ such that |z - z’|≤ 1, the density at z is at most eε times the
density at z’, satisfying the condition we outlined in the simple case.

• The distribution is symmetric about 0.

• The distribution flattens as ε decreases. More likely to deviate from the true
value.

27

Laplace distribution

28Wikipedia, Creative Commons license

Final theorem

29

In this figure, the distribution on the outputs, show in gray, is
centered at the true answer of 100, where Δf = 1 and ε= ln 2. In
orange is the same distribution where the true answer is 101.

30

“A firm foundation”

1.

2.

3.

4.

5.

6. Properties of differentially private queries.

31

Sequence of queries

• We allow the quality of each answer to deteriorate with the
sum of sensitivities of the queries, maintaining ε-differential
privacy.

• A complex query need only be penalized by its aggregate
sensitivity. This may be surprisingly small.

• Example: the number of 2-bit rows whose entries are both 1
has sensitivity 1 despite involving 2 bits per row.

32

Histogram queries
• Histogram queries are an example of the aforementioned

principle.

• The addition or removal of a row can only change the count
in a bucket by 1.

• This means we need only perturb the count in each bucket
according to Lap(Δf /ε) = Lap(1 /ε).

• The cost in noise of a query has the desired property: it
increases when the query threatens individual privacy and
shrinks when the query concerns an aggregate value.

33

Histogram queries
“This algorithm is a primitive that can be applied to any
‘histogram’ query – that is, one asking how many people fall
into each of several mutually exclusive categories, such as first
names”

“When [Adam] Smith told Dwork about this insight in the early
days of differential privacy research, ‘something inside me
went, “Wow!”’ Dwork said. ‘I realized that we could exploit
the structure of a query or computation to get much greater
accuracy than I had realized.’”

- Scientific American

34

Sensitivity analysis
• To employ this technology for practical data analysis, we

rely on the observation that standard data mining queries
can be implemented as noisy sums, allowing them to be
broken into a series of steps with known sensitivity, giving
an aggregate sensitivity for the overall query.

• Even queries that are challenging to describe by sensitivity
can be performed with ε-differential privacy maintained.

• Much of the work done in differential privacy is in the
creation of algorithms with low noise cost.

35

36

Objections
1. Do enough queries and we lose privacy.

Does this make sense? We just stop using the data?

2. This work presumes a static dataset.
What happens to the analysis if the data is changing?

3. Are there static parameters of the database that should be hidden as
well?

4. Using differential privacy does not stop many other forms of
information leakage.

5. Whoever does the calculation has the data.

6. How limited is the query model?
The standard database model does not fit with differential privacy.

37

Query model
• If it is natural to put things in terms of a histogram, then it is

natural to query.

• Absurd example from the Scientific American article:

“If you wanted to generate a list of the top 100 baby names for
2012, for example, you could ask a series of questions of the
form, “How many babies were given names that start with A?”
(or Aa, Ab or Ac), and work your way through the
possibilities.”

38

Query model
“’One of the early results in machine learning is that almost
everything that is possible in principle to learn can be learned
through counting queries,’ [Aaron] Roth said. ‘Counting queries
are not isolated toy problems, but a fundamental primitive’ —
that is, a building block from which many more complex
algorithms can be built.”

• This does not seem like a query model most people can use
naturally.

• Perhaps Dwork defined away this problem by focusing on
statistical databases.

39

Mr. Burns

• We can learn about expected
power consumption over a
population.

• But we cannot learn about an
employee’s name.

40

41

Suggested Reading
• (a few practical options)

• CryptDB: Protecting Confidentiality with Encrypted Query
Processing. Raluca Ada Popa, Catherine M. S. Redfield,
Nickolai Zeldovich, and Hari Balakrishnan. Proceedings of
the 23rd ACM SOSP, Cascais, Portugal, October 2011.

• Fully Homomorphic Encryption. Wikipedia page
maintained by Craig Genty and others.

• Fully Homomorphic Encryption with Relatively Small Key
and Ciphertext Sizes. In PKC 2010, LNCS volume 6056,
pages 420-443. Springer, 2010.

42

CryptDB?

43

CryptDB

44

CryptDB

45

CryptDB performance

46

Homomorphic encryption
• Computation done on encrypted values is reflected in the

unencrypted values.

• Known since the 1970s.

• Key breakthrough: an encryption system that is
homomorphic under both addition and multiplication and is
secure.

• Due to Craig Gentry, announced in 2009.

• 2014 MacArthur Fellow, has a J.D., and worked as a lawyer!

• This allows for homomorphic computation of any Boolean
circuit.

47

Homomorphic encryption
“Unfortunately -- you knew that was coming, right? --
Gentry’s scheme is completely impractical. It uses something
called an ideal lattice as the basis for the encryption scheme, and
both the size of the ciphertext and the complexity of the
encryption and decryption operations grow enormously with
the number of operations you need to perform on the ciphertext
-- and that number needs to be fixed in advance. And
converting a computer program, even a simple one, into a
Boolean circuit requires an enormous number of operations.
These aren't impracticalities that can be solved with some
clever optimization techniques and a few turns of Moore's
Law; this is an inherent limitation in the algorithm.”

- Bruce Schneier

48

49

