ENEE 457: Computer Systems Security
 PRF Class Exercise 10/5/20

Let F be a length-preserving pseudorandom function. For the following constructions of a keyed function $F^{\prime}:\{0,1\}^{n} \times\{0,1\}^{n-1} \rightarrow\{0,1\}^{2 n}$, state whether F^{\prime} is a pseudorandom function. If yes, prove it; if not, show an attack.

1. a) How many functions are there from $\{0,1\}^{n} \rightarrow\{0,1\}^{n}$?

Truth table has $2^{\wedge} n$ number of rows. For each row there are $2^{\wedge} n$ number of choices. So the total number is $\left(2^{\wedge} n\right)^{\wedge}\left\{2^{\wedge} n\right\}=2^{\wedge}\left\{n^{*} 2^{\wedge} n\right\}$.
b) How many permutations are there from $\{0,1\}^{n} \rightarrow\{0,1\}^{n}$?

Truth table has $2^{\wedge} n$ rows. For row i there are $\left(2^{\wedge} n-i+1\right)$ choices.
So the total number of choices is $2^{\wedge} n^{*}\left(2^{\wedge} n-1\right) *\left(2^{\wedge} n-2\right) . . .=$ $\left(2^{\wedge} n\right)$!
c) What is the expected number of bits needed to describe a random function f ? $\log _{2} 2\left(2^{\wedge}\left\{n^{*} 2^{\wedge} n\right\}\right)=n^{*} 2^{\wedge} n$.
d) What is the expected number of bits needed to describe a random permutation f ? $\log 2\left(\left(2^{\wedge} n\right)!\right)$. By Stirling's approximation, $\log (x!) \backslash$ approx $\log \left(x^{\wedge} x\right)$ so this is also $\log \left(\left(2^{\wedge} n\right)^{\wedge}\left\{2^{\wedge} n\right\}\right)=\log \left(2^{\wedge}\left\{n^{*} 2^{\wedge} n\right\}\right)=n^{*} 2^{\wedge} n$.
e) Let F be a length-preserving pseudorandom function, $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$. Assuming the description of F is public, how many bits are needed to represent a function F_{k} ?
n bits.
2. Consider a keyed function $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$.
a) If F has the property that for all $k, x, y: F_{k}(x \oplus y)=F_{k}(x) \oplus F_{k}(y)$, can F be a pseudorandom function? Justify your answer.
No. Because given $x, y \backslash$ neq 0 and $F_{-} k(x)$ and $F_{-} k(y)$, we can predict the value of $F_{-} k(x$ \oplus $y)=F_{-} k(x)$ \oplus $F_{-} k(y)$. Whereas for a (pseudo) random function, knowing the value of the function on 2 points should give no information about its value at a third distinct point.
b) If F has the property that for $\quad k, \ell, x: F_{k \oplus \ell}(x)=F_{k}(x) \oplus F_{\ell}(x)$, can F be a pseudorandom function? Assume the above relation holds for any k and x and some particular value of ℓ. Justify your answer.

Yes, this is possible. In the security game the attacker *only* gets access to F with a particular secret key k . Therefore, the attacker would not be able to obtain the values $F_{-} k(x)$ and $F_{-} \backslash e l l(x)$ in a security game with secret key k \oplus \ell. (It would only be able to obtain the values F_\{k \oplus \ell\}(x) and F_\{k'\}(x) for

