1. Public Key Encryption
(a) Let (N, e) be the public key for textbook RSA, where $N=5 \cdot 13=65$ and $e=7$. Find the corresponding secret key (N, d). Then encrypt the message $m=2 \bmod 65$, obtaining some ciphertext c. Decrypt c to recover m. Do the computations by hand and show your work.

Hint: To speed up your computations, use the following facts: $64=2^{6},(2)^{6} \equiv-1 \bmod 65$.
(b) Consider the subgroup of Z_{23}^{*} consisting of quadratic residues modulo 23. This group consists of the following elements: $\{1,2,3,4,6,8,9,12,13,16,18\}$. We choose $g=2$ to be the generator of the subgroup. Let $\mathrm{x}=5$ and $\mathrm{y}=3$. Show the messages exchanged in Diffie-Hellman key exchange, as well as the obtained shared key. Do the computations by hand and show your work.

Hint: To speed up your computations, use the fact that $3^{3}=4 \bmod 23,8^{4}=2 \bmod 23,4^{-1}=6 \bmod 23$.

