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Membership Inference Attack
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on Summary Statistics

•  Summary statistics (e.g., average) on each attribute

•  Underlying distribution of data is known

[Homer et al. (2008)], [Dwork et al. (2015)], [Backes et al. (2016)]

on Machine Learning Models

Black-box setting:

•  No knowledge about the models’ parameters

•  No access to internal computations of the model

•  No knowledge about the underlying distribution of data
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Obtaining Data for Training

Shadow Models

•  Real: similar to training data of the target model

(i.e., drawn from same distribution)

•  Synthetic: use a sampling algorithm to obtain data

classified with high confidence by the target model
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Purchase Dataset — Classify Customers (100 classes)
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overall accuracy:

0.93

shadows trained

on synthetic data

overall accuracy:

0.89

Membership inference precision
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Not in a Direct Conflict!
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DEEP LEARNING WITH  

DIFFERENTIAL PRIVACY
Martin Abadi, Andy Chu, Ian Goodfellow*,  

Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang

Google
* OpenAI



Differential Privacy

(ε, δ)-Differential Privacy: The distribution of the output

M(D) on database D is (nearly) the same as M(D′):

∀S : Pr[M(D)∊S] ≤ exp(ε) ∙ Pr[M(D′)∊S]+δ.

quantifies information leakage

allows for a small probability of failure



Interpreting Differential Privacy

DD′

Training Data ModelSGD



Differential Privacy: Gaussian Mechanism

If ℓ
2
-sensitivity of f:D→ℝn:

max
D,D′ 

||f(D) − f(D′)||
2 
< 1,

then the Gaussian mechanism

f(D) + Nn(0, σ2)

offers (ε, δ)-differential privacy, where δ ≈ exp(-(εσ)2/2).

Dwork, Kenthapadi, McSherry, Mironov, Naor, “Our Data, Ourselves”, Eurocrypt 2006



Basic Composition Theorem

If f is (ε
1
, δ

1
)-DP and g is (ε

2
, δ

2
)-DP, then

f(D), g(D) is (ε
1
+ε

2
, δ

1
+δ

2
)-DP



Simple Recipe for CompositeFunctions

Tocompute composite f with differential privacy

1. Bound sensitivity of f’scomponents

2. Apply the Gaussian mechanism to each component

3. Compute total privacy via the composition theorem



Deep Learning with DifferentialPrivacy



Differentially Private Deep Learning

softmax loss

MNIST andCIFAR-10

PCA+ neural network

1. Loss function

2. Training / Test data

3. Topology

4. Training algorithm

5. Hyperparameters

Differentially private SGD

tune experimentally









Naïve Privacy Analysis

1. Choose

2. Each step is (ε, δ)-DP

3. Number of steps T

4. Composition: (Tε, Tδ)-DP

= 4

(1.2, 10-5)-DP

10,000

(12,000, .1)-DP



Advanced Composition Theorems



Composition theorem

+ε for Blue

+.2ε for Blue

+ ε for Red



Strong Composition Theorem

Dwork, Rothblum, Vadhan, “Boosting and Differential Privacy”, FOCS 2010

Dwork, Rothblum, “Concentrated Differential Privacy”, https://arxiv.org/abs/1603.0188

1. Choose = 4

2. Each step is (ε, δ)-DP

3. Number of steps T

(1.2, 10-5)-DP

10,000

4. Strong comp: ( , Tδ)-DP (360, .1)-DP

https://arxiv.org/abs/1603.01887


Amplification by Sampling

1. Choose

2. Each batch is q fraction of data

3. Each step is (2qε, qδ)-DP

4. Number of steps T

5. Strong comp: ( , qTδ)-DP

= 4

1%

(.024, 10-7)-DP

10,000

(10, .001)-DP

S. Kasiviswanathan, H. Lee, K. Nissim, S. Raskhodnikova, A. Smith, “What Can We Learn Privately?”, SIAM J. Comp, 2011



Moments Accountant

1. Choose

2. Each batch is q fraction of data

3. Keeping track of privacy loss’s moments

4. Number of steps T

5. Moments: ( , δ)-DP

= 4

1%

10,000

(1.25, 10-5)-DP



Results



Our Datasets: “Fruit Flies of Machine Learning”

MNIST dataset:  

70,000 images

28⨉28 pixels each

CIFAR-10 dataset:  

60,000 color images

32⨉32 pixels each



Summary of Results

Baseline

no privacy

MNIST 98.3%

CIFAR-10 80%



Summary of Results

Baseline [SS15] [WKC+16]

no privacy
reports ε per  

parameter
ε =2

MNIST 98.3% 98% 80%

CIFAR-10 80%



Baseline [SS15] [WKC+16] this work

no privacy
reports ε per  

parameter ε =2
ε =8

δ = 10-5

ε =2

δ = 10-5

ε =0.5

δ = 10-5

MNIST 98.3% 98% 80% 97% 95% 90%

CIFAR-10 80% 73% 67%

Summary of Results



Contributions

● Differentially private deep learning applied to publicly  

available datasets and implemented in TensorFlow

○ https://github.com/tensorflow/models

● Innovations

○ Bounding sensitivity ofupdates

○ Moments accountant to keep tracking of privacy loss

● Lessons

○ Recommendations for selection ofhyperparameters

● Full version: https://arxiv.org/abs/1607.00133

https://github.com/tensorflow/models
https://arxiv.org/abs/1607.00133


In their work, the threat model assumes:
• Adversary can make a potentially unbounded number of queries
• Adversary has access to model internals



Private Aggregation of Teacher Ensembles (PATE)

Intuitive privacy analysis:
• If most teachers agree on the label, it does not depend on specific partitions, so

the privacy cost is small.
• If two classes have close vote counts, the disagreement may reveal private

information

1. Count votes
2. Take maximum



Noisy aggregation



The aggregated teacher violates the threat model:
• Each prediction increases total privacy loss.

privacy budgets create a tension between the accuracy and number of predictions

• Inspection of internals may reveal private data.
Privacy guarantees should hold in the face of white-box adversaries

Private Aggregation of Teacher Ensembles (PATE)

1. Count votes
2. Take maximum



Private Aggregation of Teacher Ensembles (PATE)

Privacy Analysis:
• Privacy loss is fixed after the student model is done training.
• Even if white-box adversary can inspect the model parameters, the

information can be revealed from student model is unlabeled public data
and labels from aggregate teacher which is protected with privacy



Generator:
Input: noise sampled from random
distribution

Output: synthetic input close to the
expected training distribution

Discriminator:
Input: output from generator OR
example from real training
distribution

Output: in distribution OR fake

Gaussia
n

sample

Fake
sample Sample

P(real) = …
P(fake)
= …

GANs
IJ Goodfellow et al. (2014) Generative Adversarial Networks

2 computing models



Generator:
Input: noise sampled from random
distribution

Output: synthetic input close to the
expected training distribution

Discriminator:
Input: output from generator OR
example from real training
distribution

Output: in distribution (which class)
OR fake

Gaussia
n

sample

Fake
sample Sample

P(real0)
= …
P(real1)
= …
…
P(realN)
= …
P(fake) = …

Improved Training of GANs
T Salimans et al. (2016) Improved Techniques for Training GANs



Private Aggregation of Teacher Ensembles using GANs (PATE-G)

Generator

Discriminato
r

Public
Data

Queries

Not available to the adversary Available to the adversary



Aggregated Teacher Accuracy Before the Student Model is Trained



(2, 10−5)

(8, 10−5) 97%

95%

(0.5, 10−5) 90%

M Abadi et al. (2016) Deep Learning with Differential Privacy

Evaluation

increase # teachers will increase privacy guarantee, but decrease model accuracy
# teachers is constrained by task’s complexity and the available data




