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Membership Inference Attack

on Machine Learning Models

Black-box setting:
- No knowledge about the models’ parameters
- No access to internal computations of the model

- No knowledge about the underlying distribution of data
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ML against ML
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Train Attack Model using
Shadow Models
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Obtaining Data for Training
Shadow Models

- Real: similar to training data of the target model
(i.e., drawn from same distribution)

- Synthetic: use a sampling algorithm to obtain data
classified with high confidence by the target model



Constructing the Attack Model
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Constructing the Attack Model
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Cumulative Fraction of Classes
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Privacy Learning

Does the model leak
information about data
in the training set?
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Privacy Learning

Does the model leak Does the model
information about data generalize to data
in the training set? outside the training set?
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Privacy

Does the model leak
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Learning

Does the model

information about data generalize to data

in the training set?
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Not in a Direct Conflict!
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Privacy-preserving
machine learning
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DEEP LEARNING WITH
DIFFERENTIAL PRIVACY

Martin Abadi, Andy Chu, lan Goodfellow®,
Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang
Google
* OpenAl




Differential Privacy

(g, 8)-Differential Privacy: The distribution of the output
M(D) on database D is (nearly) the same as M(D":

vS: w exp(e) - PIIM(D)€S]+5.
quantifies information leakage /

allows for a small probability of failure



Interpreting Differential Privacy

Training Data




Differential Privacy: Gaussian Mechanism

If £,-sensitivity of .D—R™
maxp o If(D) — f(D’)Hz <1,
then the Gaussian mechanism
f(D) + N"(0, 62)

offers (g, §)-differential privacy, where & =exp(-(ec)?/2).

Dwork, Kenthapadi, McSherry, Mironov, Naor, “Our Data, Ourselves”, Eurocrypt 2006



Basic Composition Theorem

If fis (¢, 6,)-DP and g is (¢,, 6,)-DP, then
f(D), g(D) is (g, *¢,,8,16,)-DP



Simple Recipe for CompositeFunctions

Tocompute composite f with differential privacy

1. Bound sensitivity of f’'scomponents
2. Apply the Gau551an mechamsm to each component >




Deep Learning with Differential Privacy



Differentially Private Deep Learning

Loss function softmax loss
Training /Test data MNIST andCIFAR-10
. Topology PCA+ neural network
Training algorithm _
Hyperparameters

Ul AN W N =




Stochastic Gradient Descent

Compute VL(0))
on random sample
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Stochastic Gradient Descent with

Differential Privacy
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Algorithm 1 Differentially private SGD (Outline)

Input: Examples {z1,...,z~n}, loss function L£(8) =
~ >, £(0,x;). Parameters: learning rate 7:, noise scale
o, group size L, gradient norm bound C.

Initialize 6y randomly
for t € [T] do
Take a random sample [L; with sampling probability
L/N
Compute gradient
For each i € L, compute g:(x;) <+ Vg, L(0:, x;)
Clip gradient

g:(x;) «— g:(x;)/ max (]_, ||E:(§-a)||2)
Add noise

g — + (3, 8(z:) +N(0,02C°T))
Descent

Ori1 +— O — m:Be
Output #r and compute the overall privacy cost (g,9)
using a privacy accounting method.




Naive Privacy Analysis

1. Choose ¢ = v2log1/9 =4

2. Each step is(s, B)fDP (1.2, 10°)-DP

3. Number of stepsT 10,000

4. Composition: (Te, T6)-DP



Advanced Composition Theorems



Composition theorem

Aﬂ, for Blue
Aﬁ% for Blue

AJF ¢ for Red




Strong Composition Theorem

1. Choose o = ‘/21(;g1/5 =4

2. Each step is(e, 6)-DP (1.2, 10°)-DP
3. Number of stepsT 10,000

‘ 00, 10P

Strong comp: (e/T'log1/5, Td)-DP [ (360, .1)-DP

Dwork, Rothblum, Vadhan, “Boosting and Differential Privacy”, FOCS 2010
Dwork, Rothblum, “Concentrated Differential Privacy”, https://arxiv.org/abs/1603.0188



https://arxiv.org/abs/1603.01887

Amplification by Sampling

1. Choose ¢ = Y Al =

2. Each batchis g fri\ction of data 1%

3. Each step is(2qge, q8)-DP (.024,10-")-DP
4. Number of stepsT 10,000

5. Strong comp: (2q8\/T log1/6,qTo)-DP

S. Kasiviswanathan, H. Lee, K. Nissim, S. Raskhodnikova, A. Smith, “What Can We Learn Privately?”; SIAM J. Comp, 2011



Moments Accountant

\2log1/5 _

=)

Each batch is q fraction of data 1%

1. Choose ¢ =

Keeping track of privacy loss’s moments

Number of stepsT 10,000

. Moments: (2¢qeV'T, 5)-DP (1.25, 105)-DP

gb N W N



Results



Our Datasets: “Fruit Flies of Machine Learning”

MNIST dataset: CIFAR-10 dataset:
70,000 images 60,000 colorimages

28X28 pixels eath 32X 32 pixels each
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Summary of Results

Baseline

no privacy

MNIST 98.3%

CIFAR-10 80%




Summary of Results

Baseline [SS15] [WKC+16]
ropriacy | IR < o
MNIST 98.3% 98% 80%




Summary of Results

Baseline [SS15] [WKC+16] this work

oprivacy | TR | ez (€28 e 108
MNIST 98.3% | 98% 80% 97% 95% 90%
CIFAR-10 | 80% - 73% 67%




Contributions

e Differentially private deep learning applied to publicly
available datasets and implemented in TensorFlow
o https://github.com/tensorflow/models

e |nnovations

o Bounding sensitivity of updates
o Moments accountant to keep tracking of privacy loss

e Lessons
o Recommendations for selection of hyperparameters

e Full version: https://arxiv.org/abs/1607.00133



https://github.com/tensorflow/models
https://arxiv.org/abs/1607.00133

SEMI-SUPERVISED KNOWLEDGE TRANSFER
FOR DEEP LEARNING FROM PRIVATE TRAINING DATA

Nicolas Papernot* Martin Abadi Ulfar Erlingsson
Pennsylvania State University Google Brain Google
ngp5056@cse.psu.edu abadif@google.com ulfar@google.com
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PATE-C2

In their work, the threat model assumes:

e Adversary can make a potentially unbounded number of queries
* Adversary has access to model internals



Private Aggregation of Teacher Ensembles (PATE)

4 Data 1 Teacher 1 \
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Aggregate

Sensitive
Data ‘> Data3

1. Count votes
Teacher n 2. Take maximum

Vv Yy

Datan

Intuitive privacy analysis:

* If most teachers agree on the label, it does not depend on specific partitions, so
the privacy cost is small.

* If two classes have close vote counts, the disagreement may reveal private
information



Noisy aggregation

n() = i i€ n), fi@) = j}] Lap (%) o) =g @) + Lon (3) }



Private Aggregation of Teacher Ensembles (PATE)

Sensitive
Data

The aggregated teacher violates the threat model:

A\

Aggregate
Teacher

4 Datal P Teacher 1
/' Data 2  F=—p- Teacher 2
‘> Data3 —P Teacher 3
4 Datan ===  Teacher n

* Each prediction increases total privacy loss.
privacy budgets create a tension between the accuracy and number of predictions

* Inspection of internals may reveal private data.

Privacy guarantees should hold in the face of white-box adversaries

1. Count votes
2. Take maximum




Private Aggregation of Teacher Ensembles (PATE)

Not accessible by adversary [J Accessible by adversary

J Data 1 }-—P\ Teacher 1 \
. /ﬁ Data2 F=—P»  Teacher 2 |\‘ I
Sensitive : Aggregate . \
Data é ‘B Data3 — Teacher3 |/' Teacher I Student <4+ Queries
\ N /7
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Privacy Analysis:

* Privacy loss is fixed after the student model is done training.

* Even if white-box adversary can inspect the model parameters, the
information can be revealed from student model is unlabeled public data
and labels from aggregate teacher which is protected with privacy



GANSs

1) Goodfellow et al. (2014) Generative Adversarial Networks

2 computing models

Generator:
Input: noise sampled from random
distribution

Output: synthetic input close to the
expected training distribution

Gaussia
n
sample

Fake
sample

Discriminator:

Input: output from generator OR
example from real training
distribution

Output: in distribution OR fake

Y P(real) = ...
Sample Ralte P(fake)



Improved Training of GANs

T Salimans et al. (2016) Improved Techniques for Training GANs

Generator:
Input: noise sampled from random
distribution

Output: synthetic input close to the
expected training distribution

Gaussia
n
sample

Fake
sample

Discriminator:

Input: output from generator OR
example from real training
distribution

Output: in distribution (which class)

OR fake Blrealo)
P&éml)
Sample i;(reaIN)
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Private Aggregation of Teacher Ensembles using GANs (PATE-G)

Sensitive
Data

Not available to the adversary
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Aggregated Teacher Accuracy Before the Student Model is Trained
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Evaluation

Dataset | ¢ | & | Queries | Non-Private Baseline | Student Accuracy
MNIST | 2.04 | 1072 100 99.18% 98.00%
MNIST | 8.03 | 107° 1000 99.18% 98.10%
SVHN | 5.04 | 10-6 500 92.80% 82.72%
SVHN | 8.19 | 1076 1000 92.80% 90.66%

M Abadi et al. (2016) Deep Learning with Differential Privacy
(0.5,1075%)  90%
(2, 10_5) 95%
(8,107°) 97%

increase # teachers will increase privacy guarantee, but decrease model accuracy
# teachers is constrained by task’s complexity and the available data





