Membership Inference Attacks against Machine Learning Models

Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov

Membership Inference Attack

Membership Inference Attack

on Summary Statistics

- Summary statistics (e.g., average) on each attribute
- Underlying distribution of data is known

[Homer et al. (2008)], [Dwork et al. (2015)], [Backes et al. (2016)]

on Machine Learning Models

Black-box setting:

- No knowledge about the models' parameters
- · No access to internal computations of the model
- No knowledge about the underlying distribution of data

Recognize the difference

Train Attack Model using **Shadow Models**

to predict if an input was a member of the training set (in) or a non-member (out)

Obtaining Data for Training Shadow Models

- Real: similar to training data of the target model (i.e., drawn from same distribution)
- Synthetic: use a sampling algorithm to obtain data classified with high confidence by the target model

Constructing the Attack Model

Constructing the Attack Model

Using the Attack Model

Not in a Direct Conflict!

DEEP LEARNING WITH DIFFERENTIAL PRIVACY

Martin Abadi, Andy Chu, Ian Goodfellow*, Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang Google

* OpenAl

Differential Privacy

 (ε, δ) -Differential Privacy: The distribution of the output M(D) on database D is (nearly) the same as M(D'):

allows for a small probability of failure

Interpreting Differential Privacy

Differential Privacy: Gaussian Mechanism

If ℓ_2 -sensitivity of $f: D \rightarrow \mathbb{R}^n$:

 $\max_{D,D'} ||f(D) - f(D')||_2 < 1,$

then the Gaussian mechanism

 $f(D) + N^n(0, \, \sigma^2)$

offers (ϵ , δ)-differential privacy, where $\delta \approx \exp(-(\epsilon \sigma)^2/2)$.

Dwork, Kenthapadi, McSherry, Mironov, Naor, "Our Data, Ourselves", Eurocrypt 2006

Basic Composition Theorem

If *f* is
$$(\varepsilon_1, \delta_1)$$
-DP and *g* is $(\varepsilon_2, \delta_2)$ -DP, then
 $f(D), g(D)$ is $(\varepsilon_1 + \varepsilon_2, \delta_1 + \delta_2)$ -DP

Simple Recipe for Composite Functions

To compute composite *f* with differential privacy

- 1. Bound sensitivity of *f*'scomponents
- 2. Apply the Gaussian mechanism to each component
- 3. Compute total privacy via the composition theorem

Deep Learning with Differential Privacy

Differentially Private Deep Learning

- 1. Loss function softmax loss
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

MNIST and CIFAR-10 PCA+ neural network

Differentially private SGD tune experimentally

Stochastic Gradient Descent

$$\begin{array}{|c|c|c|c|c|} \hline \text{Compute } \nabla L(\theta_1) & & \\ \hline \text{on random sample} & & \\ \hline \theta_2 := \theta_1 - \eta \nabla L(\theta_1) & & \\ \hline \text{on random sample} & & \\ \hline \theta_3 := \theta_2 - \eta \nabla L(\theta_2) & & \\ \hline \theta_3 := \theta_3 - \eta \nabla L(\theta_2) & & \\ \hline \theta_3 := \theta_3 - \eta \nabla L(\theta_2) & & \\ \hline \theta_3 := \theta_3 - \eta \nabla L(\theta_2) & & \\ \hline \theta_3 := \theta_3 - \eta \nabla L(\theta_2) & & \\ \hline \theta_3 := \theta_3 - \eta \nabla L(\theta_3$$

Stochastic Gradient Descent with Differential Privacy

Algorithm 1 Differentially private SGD (Outline)

Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta)$ = $\frac{1}{N}\sum_{i}\mathcal{L}(\theta, x_{i})$. Parameters: learning rate η_{t} , noise scale σ , group size L, gradient norm bound C. **Initialize** θ_0 randomly for $t \in [T]$ do Take a random sample L_t with sampling probability L/NCompute gradient For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$ Clip gradient $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$ Add noise $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$ Descent $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$ **Output** θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

Naïve Privacy Analysis

1. Choose
$$\sigma = \frac{\sqrt{2\log 1/\delta}}{\varepsilon}$$

- 2. Each step is (ε, δ) -DP
- 3. Number of steps T
- 4. Composition: $(T\varepsilon, T\delta)$ -DP

```
= 4
(1.2, 10<sup>-5</sup>)-DP
10,000
(12,000, .1)-DP
```

Advanced Composition Theorems

Composition theorem

Strong Composition Theorem

1. Choose
$$\sigma = \frac{\sqrt{2\log 1/\delta}}{\varepsilon}$$

- 2. Each step is (ϵ, δ) -DP
- 3. Number of steps T
- 4. Strong comp: $(\varepsilon \sqrt{T \log 1/\delta}, T\delta)$ -DP

Dwork, Rothblum, Vadhan, "Boosting and Differential Privacy", FOCS 2010 Dwork, Rothblum, "Concentrated Differential Privacy", <u>https://arxiv.org/abs/1603.0188</u>

$$=4$$

Amplification by Sampling

1. Choose
$$\sigma = \frac{\sqrt{2 \log 1/\delta}}{\varepsilon}$$
= 42. Each batch is q fraction of data1%3. Each step is $(2q\varepsilon, q\delta)$ -DP $(.024, 10^{-7})$ -DP4. Number of steps T10,0005. Strong comp: $(2q\varepsilon\sqrt{T \log 1/\delta}, qT\delta)$ -DP $(10, .001)$ -DP

S. Kasiviswanathan, H. Lee, K. Nissim, S. Raskhodnikova, A. Smith, "What Can We Learn Privately?", SIAM J. Comp, 2011

Moments Accountant

1. Choose
$$\sigma = \frac{\sqrt{2\log 1/\delta}}{\varepsilon} = 4$$

10,000

 $(1.25, 10^{-5})$ -DP

- 2. Each batch is q fraction of data 1%
- 3. Keeping track of privacy loss's moments
- 4. Number of steps *T*
- 5. Moments: $(2q\varepsilon\sqrt{T}, \delta)$ -DP

Our Datasets: "Fruit Flies of Machine Learning"

MNIST dataset: 70,000 images 28×28 pixels each

CIFAR-10 dataset: 60,000 color images 32×32 pixels each

Summary of Results

	Baseline		
	no privacy		
MNIST	98.3%		
CIFAR-10	80%		

Summary of Results

	Baseline	[SS15]	[WKC+16]
	no privacy	reports ε per parameter	ε =2
MNIST	98.3%	98%	80%
CIFAR-10	80%		

Summary of Results

	Baseline	[SS15]	[WKC+16]	this work		
	no privacy	reports ε per parameter	ε =2	ε = 8 δ = 10 ⁻⁵	ε =2 δ = 10 ⁻⁵	$\epsilon = 0.5$ $\delta = 10^{-5}$
MNIST	98.3%	98%	80%	97%	95%	90%
CIFAR-10	80%			73%	67%	

Contributions

- Differentially private deep learning applied to publicly available datasets and implemented in TensorFlow
 - <u>https://github.com/tensorflow/models</u>
- Innovations
 - Bounding sensitivity of updates
 - Moments accountant to keep tracking of privacy loss
- Lessons
 - Recommendations for selection of hyperparameters
- Full version: <u>https://arxiv.org/abs/1607.00133</u>

SEMI-SUPERVISED KNOWLEDGE TRANSFER FOR DEEP LEARNING FROM PRIVATE TRAINING DATA

Nicolas Papernot* Pennsylvania State University ngp5056@cse.psu.edu Martín Abadi Google Brain abadi@google.com Úlfar Erlingsson Google ulfar@google.com

Ian Goodfellow Google Brain[†] goodfellow@google.com Kunal Talwar Google Brain kunal@google.com

In their work, the threat model assumes:

- Adversary can make a potentially unbounded number of queries
- Adversary has access to model internals

Private Aggregation of Teacher Ensembles (PATE)

Intuitive privacy analysis:

- If most teachers agree on the label, it does not depend on specific partitions, so the privacy cost is small.
- If two classes have close vote counts, the disagreement may reveal private information

Noisy aggregation

Private Aggregation of Teacher Ensembles (PATE)

The aggregated teacher violates the threat model:

- Each prediction increases total privacy loss. privacy budgets create a tension between the accuracy and number of predictions
- Inspection of internals may reveal private data. Privacy guarantees should hold in the face of white-box adversaries

Private Aggregation of Teacher Ensembles (PATE)

Privacy Analysis:

- Privacy loss is fixed after the student model is done training.
- Even if white-box adversary can inspect the model parameters, the information can be revealed from student model is unlabeled public data and labels from aggregate teacher which is protected with privacy

GANs

IJ Goodfellow et al. (2014) Generative Adversarial Networks

2 computing models

Generator:

Input: noise sampled from random distribution

Output: synthetic input close to the expected training distribution

Discriminator:

Input: output from generator OR example from real training distribution

Output: in distribution OR fake

Improved Training of GANs

T Salimans et al. (2016) Improved Techniques for Training GANs

Generator:

Input: noise sampled from random distribution

Output: synthetic input close to the expected training distribution

Discriminator:

Input: output from generator OR example from real training distribution

Private Aggregation of Teacher Ensembles using GANs (PATE-G)

Aggregated Teacher Accuracy Before the Student Model is Trained

Evaluation

Dataset	ε	δ	Queries	Non-Private Baseline	Student Accuracy
MNIST	2.04	10^{-5}	100	99.18%	98.00%
MNIST	8.03	10^{-5}	1000	99.18%	98.10%
SVHN	5.04	10^{-6}	500	92.80%	82.72%
SVHN	8.19	10^{-6}	1000	92.80%	90.66%

M Abadi et al. (2016) Deep Learning with Differential Privacy

 $(0.5, 10^{-5})$ 90% $(2, 10^{-5})$ 95% $(8, 10^{-5})$ 97%

increase # teachers will increase privacy guarantee, but decrease model accuracy # teachers is constrained by task's complexity and the available data