Let F be a length-preserving pseudorandom function. For the following constructions of a keyed function F': $\{0,1\}^n \times \{0,1\}^{n-1} \rightarrow \{0,1\}^{2n}$, state whether F' is a pseudorandom function. If yes, prove it; if not, show an attack.

1. a) How many functions are there from $\{0,1\}^n \rightarrow \{0,1\}^n$?

 Truth table has 2^n number of rows. For each row there are 2^n number of choices. So the total number is $(2^n)^{2^n} = 2^{n*2^n}$.

b) How many permutations are there from $\{0,1\}^n \rightarrow \{0,1\}^n$?

 Truth table has 2^n rows. For row i there are $(2^n - i + 1)$ choices.

 So the total number of choices is $2^n * (2^n-1) * (2^n-2)... = (2^n)!$

c) What is the expected number of bits needed to describe a random function f?

 $\log_2(2^{n*2^n}) = n*2^n$.

d) What is the expected number of bits needed to describe a random permutation f?

 $\log_2 ((2^n)!)$.

2. Consider a keyed function $F: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$.

 a) If F has the property that for all k, x, y:

 $F_k(x \oplus y) = F_k(x) \oplus F_k(y)$,

 can F be a pseudorandom function? Justify your answer.

 No. Because given $x, y \neq 0$ and $F_k(x)$ and $F_k(y)$, we can predict the value of $F_k(x \oplus y) = F_k(x) \oplus F_k(y)$. Whereas for a (pseudo) random function, knowing the value of the function on 2 points should give no information about its value at a third distinct point.

 b) If F has the property that for all k, ℓ, x:

 $F_{k \oplus \ell}(x) = F_k(x) \oplus F_\ell(x)$,

 can F be a pseudorandom function? Justify your answer.

 Yes, this is possible. In the security game the attacker *only* gets access to F with a particular secret key k. Therefore, the attacker would not be able to obtain the values $F_k(x)$ and $F_{\ell}(x)$ in a security game with secret key $k \oplus \ell$. (It would only be able to obtain the values $F_{(k \oplus \ell)}(x)$ and $F_{(k')} (x)$ for known k'.)