
ENEE 457 — Computer Systems Security Fall Semester, 2019

UNIVERSITY OF MARYLAND
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ENEE 457
Computer Systems Security

Instructor: Dana Dachman-Soled
Prepared by: Annette Keller

Homework 2: Security Application with Cryptographic
Implementations

Out: 11/04/19 Due: 11/11/19 10:59am

Student Name:

1 Introduction

This homework is intended to be a fast and lightweight overview of some application feature and
implementation references that may be helpful for a Build-It/Break-It project. Each page of this
homework should only take a few minutes and it’s worth half the credit of a problem-solving homework.
Extra credit is available for getting a head start on your Build-It/Break-It project.

ENEE 457 — Computer Systems Security Fall Semester, 2019

2 Example Security Application: Logging (5 points)

a. How Does SIEM Logging Work?

What is SEIM and how does it work?

b. Standards and Best Practices for SIEM Logging

Why are secure logging best practices important?

c. Application Security Threats, Attacks

What 5 application security threats or defenses against application security threats could be on a shortlist
for an application that manages access to a room with a hardware device like a cipher lock?

Threat Modeling

Input Validation

Bean Validation

Reverse Engineering Tampering

Application Logging

Bad Authorization Logic

Correct Cryptographic Primitives

Credential Stuffing

Session Management

Buffer Overflow

Parameter Manipulation

Exception Management

Deserialization

Secure Coding Standards

(15 points)

https://www.alienvault.com/blogs/security-essentials/everything-you-wanted-to-know-about-siem-and-log-management-but-were-afraid
https://www.alienvault.com/blogs/security-essentials/what-kind-of-logs-for-effective-siem-implementation
https://en.wikipedia.org/wiki/Application_security#Application_threats_/_attacks
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Threat_Modeling_Cheat_Sheet.md
https://www.whitehatsec.com/glossary/content/input-validation
https://cheatsheetseries.owasp.org/cheatsheets/Bean_Validation_Cheat_Sheet.html
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04c-Tampering-and-Reverse-Engineering.md
https://www.techopedia.com/definition/1819/application-log
https://www.owasp.org/index.php/Reviewing_Code_for_Authorization_Issues
https://en.wikipedia.org/wiki/Cryptographic_primitive#Commonly_used_primitives
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Credential_Stuffing_Prevention_Cheat_Sheet.md
https://en.wikipedia.org/wiki/Session_management
https://www.owasp.org/index.php/Reviewing_Code_for_Buffer_Overruns_and_Overflows
https://www.cgisecurity.com/owasp/html/ch11s04.html
https://informationsecurityprogram.com/exception-management-policy-best-practices/
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Deserialization_Cheat_Sheet.md
https://wiki.sei.cmu.edu/confluence/display/c
Dana Dachman-Soled
Rectangle

ENEE 457 — Computer Systems Security Fall Semester, 2019

3 Cryptographic Primitives (15 points)

a. Understanding Cryptographic Primitives

What are cryptographic primitives?

What cryptographic primitives may be used for source authentication of a message?

What cryptographic primitives may be used for ensuring message integrity?

b. Cryptographic primitives in blockchains

What are the top 4 cryptographic primitives used in blockchains?

What are the usages of hash functions in blockchains? (Just list them, no description necessary)

The digital signature primitive is described as having 3 uses. What are they?

c. ENEE457 Computer Systems Security: Fall 2019 Lecture Summaries

What cryptographic primitives have we covered in class?

(25 points)

https://tnichols.org/2015/09/27/Understanding-Cryptographic-Primitives/
https://www.sciencedirect.com/science/article/pii/S108480451830362X
https://user.eng.umd.edu/~danadach/Security_Fall_19/lectures.html
Dana Dachman-Soled
Rectangle

ENEE 457 — Computer Systems Security Fall Semester, 2019

4 Secure Coding Best Practices (15 points)

a. Cryptographic Best Practices

What is a best practice for selecting a random number generator?

b. The Do’s and Don’ts of Writing Crypto Code

What is "rolling your own" in crypto coding? Is it a do or a don't?

c. SEI Cert C Secure Coding Standard

Secure applications can be compromised by memory errors. Name a memory management error that can
result in the leak of cryptographic secrets even if your application is coded correctly, the system doesn't
run out of resources and you don't have any software vulnerabilities?

(15 points)

https://gist.github.com/atoponce/07d8d4c833873be2f68c34f9afc5a78a
https://hackernoon.com/dosanddontsofcryptocode-bd36cf28910a
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
Dana Dachman-Soled
Rectangle

Dana Dachman-Soled
Rectangle

ENEE 457 — Computer Systems Security Fall Semester, 2019

5 Code Review of OpenSSL Implementation (20 points)
In engineering workplaces, you may get “help” on how to do something by being handed some old code to
read, and then you have to infer how the process or principles were applied from your reading of the code.
Below is a listing of function calls in an OpenSSL implementation of some cryptographic code that you
could be given as a reference for how to add some secure features to a design project. It’s in C++ but it’s
readable to you with your C background. The function headers are listed as top level. For extra clarity,
functions they call are also listed hierarchically. The code base is in Ian Bull’s github repository. Luckily,
he has also written a tutorial article, Code Signing and Verification with OpenSSL, explaining the code.

RSA*	createPrivateRSA(std::string	key)	
RSA*	createPublicRSA(std::string	key)	
bool	RSASign(RSA*	rsa,	const	unsigned	char*	Msg,	size_t	MsgLen,	unsigned	char**	EncMsg,	size_t*	
MsgLenEnc)	

EVP_DigestSignInit(m_RSASignCtx,NULL,	EVP_sha256(),	NULL,priKey)	
EVP_DigestSignUpdate(m_RSASignCtx,	Msg,	MsgLen)	
EVP_DigestSignFinal(m_RSASignCtx,	NULL,	MsgLenEnc)	
EVP_DigestSignFinal(m_RSASignCtx,	*EncMsg,	MsgLenEnc)	
EVP_MD_CTX_cleanup(m_RSASignCtx)	

bool	RSAVerifySignature(RSA*	rsa,		unsigned	char*	MsgHash,	size_t	MsgHashLen,	const	char*	Msg,		
size_t	MsgLen,	bool*	Authentic)	

EVP_DigestVerifyInit(m_RSAVerifyCtx,NULL,	EVP_sha256(),NULL,pubKey)	
EVP_DigestVerifyUpdate(m_RSAVerifyCtx,	Msg,	MsgLen)	
EVP_DigestVerifyFinal(m_RSAVerifyCtx,	MsgHash,	MsgHashLen)	
EVP_MD_CTX_cleanup(m_RSAVerifyCtx)	

void	Base64Encode(const	unsigned	char*	buffer,		size_t	length,	char**	base64Text)	
BIO_new(BIO_f_base64())	
BIO_new(BIO_s_mem())	
bio	=	BIO_push(b64,	bio)	
BIO_write(bio,	buffer,	length)	
BIO_flush(bio)	
BIO_get_mem_ptr(bio,	&bufferPtr)	
BIO_set_close(bio,	BIO_NOCLOSE)	
BIO_free_all(bio)	

size_t	calcDecodeLength(const	char*	b64input)	
void	Base64Decode(const	char*	b64message,	unsigned	char**	buffer,	size_t*	length)	

BIO_new_mem_buf(b64message,	-1)	
BIO_new(BIO_f_base64())	
BIO_push(b64,	bio)	
BIO_read(bio,	*buffer,	strlen(b64message))	

char*	signMessage(std::string	privateKey,	std::string	plainText)	
RSASign(privateRSA,	(unsigned	char*)	plainText.c_str(),	plainText.length(),	&encMessage,	
&encMessageLength)	
Base64Encode(encMessage,	encMessageLength,	&base64Text)	

bool	verifySignature(std::string	publicKey,	std::string	plainText,	char*	signatureBase64)	
Base64Decode(signatureBase64,	&encMessage,	&encMessageLength)	
RSAVerifySignature(publicRSA,	encMessage,	encMessageLength,	plainText.c_str(),	
plainText.length(),	&authentic)	

int	main()	{	
		std::string	plainText	=	"My	secret	message.\n";	
		char*	signature	=	signMessage(privateKey,	plainText);	
		bool	authentic	=	verifySignature(publicKey,	"My	secret	message.\n",	signature);	
		if	(authentic)	{	
				std::cout	<<	"Authentic"	<<	std::endl;	
		}	else	{	
				std::cout	<<	"Not	Authentic"	<<	std::endl;	
		}	
}	

https://gist.github.com/irbull/08339ddcd5686f509e9826964b17bb59
https://eclipsesource.com/blogs/2016/09/07/tutorial-code-signing-and-verification-with-openssl/

ENEE 457 — Computer Systems Security Fall Semester, 2019

a. What is an RSA object and what element in the chosen plaintext attack (CPA) model does it contain?

b. In the RSAVerifySignature function header, identify which parameters are inputs, which are outputs
and what they are used for.

c. What is Base 64 encoding and why is it used? There was something that was encoded in Base 64 in
the last project. What was that?

d. Ian Bull explains in his article how the RSASign function works. How do the EVP functions map to
those things he describes?

ENEE 457 — Computer Systems Security Fall Semester, 2019

6 6. Warm-up for a Build-it/Break-It Access Log Application (25 points)

You are asked to outline a secure logging application for the Build-It/Break-It project. The
specifications can be found on the course webpage. Pseudocode is allowable. If you need extra space,
please use the extra page on the end of this file. You may append any additional pages you wish to add.

Your outline should include the following:

o description of functions that you plan to create for such an implementation,
o description of program flow,
o any data structures or buffers that may be used, and
o cryptographic approaches you might take for such an application and the cryptographic

primitives they might use

https://user.eng.umd.edu/~danadach/Security_Fall_17/SPEC.html

ENEE 457 — Computer Systems Security Fall Semester, 2019

7 Extra credit (15 points)
Get a start on your Build-it/Break-it project header file. Except for any cryptographic methods,
implement the above with
+ 5 points: function headers
+ 5 points: function comments specifying usage, functionality, inputs and outputs for the
function calls

http://www-h.eng.cam.ac.uk/help/languages/C++/c++_tutorial/functions.html
https://www.cs.swarthmore.edu/~newhall/unixhelp/c_codestyle.html

ENEE 457 — Computer Systems Security Fall Semester, 2019

	ENEE 457 Computer Systems Security:
	Fall Semester2019:
	2:
	a:
	b:

	3:
	a3:
	a2:
	a1:
	b3:
	c:
	b2:
	b1:

	4:
	c:
	a:
	b:

	threat: Off
	input: Off
	bean: Off
	re: Off
	log: Off
	logic: Off
	crypto: Off
	cred: Off
	session: Off
	bo: Off
	param: Off
	e: Off
	ds: Off
	sc: Off
	defend: You may include any defenses of your choices here (optional)
	8:
	7:
	6:
	5:
	c:
	a:
	b:
	d:

	name:

