RSA Encryption

CONSTRUCTION 11.25
Let GenRSA be as in the text, Define a public-key encryption scheme as
follows:
e Gen: on input 1™ run GenRSA(1") to obtain N.e, and d. The
public key is {N.e) and the private key is (N, d).
¢ Enc: on input a public key pk = (N, e) and a message m € L},

compute the ciphertext
¢ := [m" mod NJ.

¢ Dec: on input a private key sk = (N, d) and a ciphertext ¢ € Z};,
compute the message

m = [c mod N]

The plain RSA encryption scheme.




Existential Unforgeability of Signatures
under CMA

Challenger
(pk, sk) « Gen()

Set of g o <« Sign(sk,m)
queries Q

(m*,0%)
forgery {

Attacker “wins” if :
1. m"¢Q
2. Vrfy(pk,m*,c*) =1

Security Requirement: Any efficient attacker wins with probability at most negligible



RSA Signatures

CONSTRUCTION 12.5
Let GenRSA be as in the text. Define a signature scheme as follows:

e Gen: on input 1™ run GenRSA(1") to obtain (N, e, d). The public
kev is (V. e} and the private key is (N, d).

e Sign: on input a private key sk = (N, d) and a message m € &},
compute the signature

7 := [m® mod N].

e Vrfy: on input a public key pk = (N, e), & message m € £, and
a signature o € £, output 1 if and only if

]
m = [o° mod NJ.

The plain RSA signature scheme.




Attacks

No message attack:

Choose s € Zy, compute s°.
Ouput (m = s¢, 0 = s) as the forgery.



Attacks

Forging a signature on an arbitrary message:

To forge a signature on message m, choose
arbitrary my, m, # 1 such that m = my - m,.

Query oracle for (mq, g;), (m,, 5,).
Output (m, g), where g = o0y * 0,.



RSA-FDH

CONSTRUCTION 12.6

Let GenR5A be as in the previous sections, and construet a signature
scheme as follows:

e Gen: on nput 17, run GenRSA(1"™) to compute (N, e.d). The
public key is (N, e) and the private key is (IV, d).
As part of kev generation, a funetion H : {0, 1}* — £3; 1s specified,
but we leave this implicit.

e 5ign: on input a private key (N,d) and a message m € {0,1}7,
compute

i [H[m]d mod NJ.

o Vrfy: on input a public key (N, e}, & message m, and a signature

o, output 1 if and only if &° L H (rm) mod V.

The RSA-FDH signature scheme.




Certificates and Public-Key
Infrastructure



A single certificate authority

pk-, must be distributed over an
authenticated channel

— Need only be carried out once

Usually, pk., included in browser, browser
programmed to automatically verify
certificates as they arrive.

To obtain certificate, must prove that url is
legitimate.

All parties must completely trust CA.



Multiple certificate authorities

Parties can choose which CA to use to obtain a
certificate.

Parties can choose which CA’s certificates to
trust.

Problem: some CA may become
compromised.

Each user must manually decide which CA to
trust.



Delegation and certificate chains

 Example of certificate chain:
pka, certg_ 4, vkg, certy g
Need only trust Charlie in the above example.
* Certificate asserts that legitimate party holds

public key and that the party is trusted to issue
other certificates.

— Delegation of CA’s ability to issue certificates



The “web of trust” model

Model is used by PGP (“pretty good privacy”)
email encryption software for distribution of
public keys.

Anyone can issue certificates to anyone else
Each user must decide who to trust

Example:
— Alice holds pk4, pk,, pks for users Cy, C5, C3
— Bob has certificates cert¢ g, certc,p, certc, g

Public keys and certificates can be stored in a
central database.



Invalidating Certificates

* Expiration: Include expiration date as part of the
certificate.

— Very coarse grained method. E.g. employee leaves
company but certificate does not expire for a year.

* Revocation
— CAincludes a serial number in every certiciate it issues.

— At the end of each day, the CA will generate a certificate
revocation list (CRL) with the serial numbers of all revoked
certificates.

— CA will sign the CRL and the current date.
— Signed CRL is then widely distributed.



Putting it all together:
SSL/TLS

TLS: Transport Layer Security Protocol

— Protocol used by browser when connecting via https
Standardized protocol based on a precursor called SSL (Secure Socket
Layer).

— Latest SSL version: SSL 3.0

— TLS version 1.0 released in 1999

— TLS version 1.1 in 2006

— TLS version 1.2 (current) in 2008

— 50% of browsers still use TLS 1.0
Allows a client (web browser) and a server (website) to agree on a set of
shared keys and then use those keys to encrypt and authenticate their
subsequent communication.
Two parts:

— Handshake protocol performs authenticated key exchange to establish the
shared keys

— Record-layer protocol uses shared keys to encrypt/authenticated the
communication.

Typically used for authentication of servers to clients (usually only
servers—websites—have certificates).



