Modes of Operation—Block Cipher

FIGURE 3.5: Electronic Code Book (ECB) mode.
FIGURE 3.6: An illustration of the dangers of using ECB mode. The middle figure is an encryption of the image on the left using ECB mode; the figure on the right is an encryption of the same image using a secure mode.

FIGURE 3.7: Cipher Block Chaining (CBC) mode.

Modes of Operation—Block Cipher

FIGURE 3.9: Output Feedback (OFB) mode.

FIGURE 3.10: Counter (CTR) mode.

Details on DES

- The Data Encryption Standard was developed in the 1970s by IBM (with help from the National Security Agency), and adopted in 1977 as a Federal Information Processing Standard for the US.
- DES is no longer considered secure due to its short key length of 56 bits which makes it vulnerable to brute-force attacks.
- It remains in wide use today in the strengthened form of triple-DES, described in Section 6.2.4.
- DES is of great historical significance. It has undergone intensive scrutiny within the cryptographic community, arguably more than any other cryptographic algorithm in history. The common consensus is that, relative to its key length, DES is an extremely well designed cipher.
- To date, the best known attack on DES in practice is an exhaustive search over all 2^{56} possible keys.

Details on DES

- The DES block cipher is a 16 -round Feistel network with a block length of 64 bits and a key length of 56 bits. The same round function \hat{f} is used in each of the 16 rounds.
- Round function takes a 48-bit sub-key and, as in a (balanced) Feistel network, a 32-bit input
- The key schedule of DES is used to derive a sequence of 48 -bit sub-keys k_{1}, \ldots, k_{16} from the 56-bit master key.

3DES (Triple Encryption)

- First Idea: increase the key length by doing a double-encryption, thereby increasing complexity of brute-force attack from 2^{56} to 2^{112}.
- Let F be a block-cipher with an n-bit key length and ℓ-bit block length.
- Define the following block cipher with $2 n$-bit key:

$$
F_{k_{1}, k_{2}}^{\prime}(x):=F_{k_{2}}\left(F_{k_{1}}(x)\right)
$$

- Problem: Meet in the middle attack

Meet in the Middle Attack on Double DES

Adversary is given a single input/output pair (x, y) where $y=$ $F_{k^{*}{ }_{1}, k^{*}{ }_{2}}(x)$ for unknown k_{1}, k_{2}. The adversary does the following:

- For each $k_{1} \in\{0,1\}^{n}$, compute $z:=F_{k_{1}}(x)$ and store $\left(z, k_{1}\right)$ in a list L.
- For each $k_{2} \in\{0,1\}^{n}$, compute $z:=F_{k_{2}}{ }^{-1}(y)$ and store $\left(z, k_{2}\right)$ in a list L^{\prime}.
- Sort L and L^{\prime}, respectively, by their first components.
- Entries $\left(z_{1}, k_{1}\right) \in L$ and $\left(z_{2}, k_{2}\right) \in L^{\prime}$ are a match if $z_{1}=z_{2}$. For each match of this sort, add $\left(k_{1}, k_{2}\right)$ to a set S.

Expected number of elements in S is $2^{2 n-\ell}$. Can use a few more input/output pairs to reduce to a single (k_{1}, k_{2}).

Triple DES

Two variants:

- $F_{k_{1}, k_{2}, k_{3}}^{\prime}(x):=F_{k_{3}}\left(F_{k_{2}}{ }^{-1}\left(F_{k_{1}}(x)\right)\right)$
- $F^{\prime}{ }_{k_{1}, k_{2}}(x):=F_{k_{1}}\left(F_{k_{2}}{ }^{-1}\left(F_{k_{1}}(x)\right)\right)$
- Middle cipher is reversed for backwards compatibility: setting $k_{1}=k_{2}=k_{3}$ results in a single invocation of F using key k_{1}.

Security of Triple-DES

- Security of the first variant: The cipher is susceptible to a meet-in-the-middle attack just as in the case of double encryption, though the attack now takes time $2^{2 n}$. This is the best known attack.
- Security of the second variant. There is no known attack with time complexity better than $2^{2 n}$ when the adversary is given only a small number of input/output pairs. Thus, two-key triple encryption is a reasonable choice in practice.

Disadvantage of both Triple-DES variants: Fairly slow since it requires 3 invocations of DES.

Details on AES

- In January 1997, the United States National Institute of Standards and Technology (NIST) announced a competition to select a new block cipher-to be called the Advanced Encryption Standard, or AES
- 15 submissions from all over the world. Each team's candidate cipher was intensively analyzed by members of NIST, the public, and (especially) the other teams. Two workshops were held ('98, '99) to analyze the various submissions. Following the second workshop, NIST narrowed the field down to 5 "finalists" and the second round of the competition began. A third AES workshop was held in April 2000, inviting additional scrutiny on the five finalists.
- In October 2000, NIST announced that the winning algorithm was Rijndael (a block cipher designed by Belgian cryptographers Vincent Rijmen and Joan Daemen)

Details on AES

A 4-by-4 array of bytes called the state is modified in a series of rounds. The state is initialized to the input to the cipher (128 bits = 16 bytes). The following operations are then applied in each round:

1. Stage 1 - AddRoundKey: A 128-bit sub-key is derived from the master key, and is interpreted as a 4-by-4 array of bytes. state updated by XORing it with this sub-key.
2. Stage 2 - SubBytes: Each byte of state is replaced by another byte according to a single fixed lookup table S. This substitution table (or S-box) is a bijection over $\{0,1\}^{8}$.
3. Stage 3 -ShiftRows: The bytes in each row of state are cyclically shifted to the left as follows: the first row of the array is untouched, the second row is shifted one place to the left, the third row is shifted two places to the left, and the fourth row is shifted three places to the left. All shifts are cyclic so that, e.g., in the second row the first byte becomes the fourth byte.
4. Stage 4 - MixColumns: An invertible transformation is applied to the four bytes in each column. (linear transformation-i.e., matrix multiplication-over an appropriate field.)

If two inputs differ in $b>0$ bytes, then transformation yields two outputs differing in at least $5-b$ bytes.
In the final round, MixColumns is replaced with AddRoundKey. Why?

- To date, no practical cryptanalytic attacks significantly better than a exhaustive search.

Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms
(Gen, Mac, Vrfy) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1^{n} and outputs a key k with $|k| \geq n$.
2. The tag-generation algorithm Mac takes as input a key k and a message $m \in\{0,1\}^{*}$, and outputs a tag t. $t \leftarrow M a c_{k}(m)$.
3. The deterministic verification algorithm Vrfy takes as input a key k, a message m, and a tag t. It outputs a bit b with $b=1$ meaning valid and $b=0$ meaning invalid. $b:=\operatorname{Vrf} y_{k}(m, t)$.
It is required that for every n, every key k output by $\operatorname{Gen}\left(1^{n}\right)$, and every $m \in\{0,1\}^{*}$, it holds that $\operatorname{Vrf} y_{k}\left(m, \operatorname{Mac}_{k}(m)\right)=1$.

Existential Unforgeability under CMA

Attacker "wins" if :

1. $m^{*} \notin Q$
2. $\operatorname{Vrfy}\left(k, m^{*}, t^{*}\right)=1$

Security Requirement: Any efficient attacker wins with probability at most negligible

CBC-MAC

Let F be a pseudorandom function, and fix a length function ℓ. The basic CBC-MAC construction is as follows:

- Mac: on input a key $k \in\{0,1\}^{n}$ and a message m of length $\ell(n) \cdot n$, do the following:

1. Parse m as $m=m_{1}, \ldots, m_{\ell}$ where each m_{i} is of length n.
2. Set $t_{0}:=0^{n}$. Then, for $i=1$ to ℓ :

$$
\text { Set } t_{i}:=F_{k}\left(t_{i-1} \oplus m_{i}\right)
$$

Output t_{ℓ} as the tag.

- Vrfy: on input a key $k \in\{0,1\}^{n}$, a message m, and a tag t, do: If m is not of length $\ell(n) \cdot n$ then output 0 . Otherwise, output 1 if and only if $t=\operatorname{Mac}_{k}(m)$.

CBC-MAC

FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).

Authenticated Encryption

- Definition: A private-key encryption scheme is an authenticated encryption scheme if it is CCA-secure and unforgeable.

CCA Security

Attacker "wins" if $b^{\prime}=b$.
CCA Security: Any efficient attacker wins with probability at most $\frac{1}{2}+$ negligible

Generic Constructions

Encrypt-and-authenticate

Encryption and message authentication are computed independently in parallel.

$$
c \leftarrow E n c_{k_{E}}(m) \quad t \leftarrow M a c_{k_{M}}(m)
$$

Is this secure? NO!

Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the message and tag are encrypted together.

$$
t \leftarrow \operatorname{Mac}_{k_{M}}(m) \quad c \leftarrow E n c_{k_{E}}(m \| t)
$$

c is sent

Is this secure? NO! Encryption scheme may not be CCA-secure.

Encrypt-then-authenticate

The message m is first encrypted and then a MAC tag is computed over the result

$$
c \leftarrow E n c_{k_{E}}(m) \quad t \leftarrow M a c_{k_{M}}(c)
$$

Is this secure? YES! As long as the MAC is strongly secure.

Examples

Consider multiplication modulo 23. 23 is a "safe prime" since $23=2 * 11+1$, where 11 is a prime.

Consider the following cyclic group generated by 2 :

Actually, all of 2, 4, 8, 16, 9, $18,13,3,6,12$ are generators and each of them raised to the 11 will be equal to 1 modulo 23 .

$2^{0} \bmod 23$	1
$2^{1} \bmod 23$	2
$2^{2} \bmod 23$	4
$2^{3} \bmod 23$	8
$2^{4} \bmod 23$	16
$2^{5} \bmod 23$	$32 \rightarrow 9$
$2^{6} \bmod 23$	18
$2^{7} \bmod 23$	$36 \rightarrow 13$
$2^{8} \bmod 23$	$26 \rightarrow 3$
$2^{9} \bmod 23$	6
$2^{10} \bmod 23$	12
$2^{11} \bmod 23$	$24 \rightarrow 1$

