Lattice-Based Cryptography

Huijing Gong 10/21/2019

• Slides courtesy of Dana Dachman-Soled, Valeria Nikolaenko, Chris Peikert, and Oded Regev

Traditional Crypto Assumptions

• Recall...

Traditional Crypto Assumptions

- Discrete Log: Given $g^x \mod p$, find x.
 - (Decisional) Diffie-Hellman Assumptions (g^x, g^y, g^{xy}) , (g^x, g^y, g^z)
- More: Factoring

Are They Secure?

- Algorithmic Advances:
 - Factoring: Best algorithm time $2^{\tilde{O}(n^{\frac{1}{3}})}$ to factor *n*-bit number.
 - Discrete log: Best algorithm $2^{\tilde{O}(n^{\frac{1}{3}})}$ for groups Z_p^* , where p is n-bit.
- Quantum Computers:
 - Shor's algorithm solves both factoring and discrete log in quantum polynomial time ($\tilde{O}(n^2)$).

Are They Secure?

"For those partners and vendors that have not yet made the transition to Suite B algorithms (ECC), we recommend not making a significant expenditure to do so at this point but instead to **prepare for the upcoming quantum resistant algorithm transition**.... Unfortunately, the growth of elliptic curve use has bumped up against the fact of continued progress in the research on quantum computing, necessitating a re-evaluation of our cryptographic strategy. "—NSA Statement, August 2015

NIST Kicks Off Effort	to Defend Encrypted Data f	rom Quantum
Computer Threat	Google Dabbles in Post-Quantum Cryptography	
April 28, 2016		
	By Richard Adhikari Jul 12, 2016 2:06 PM PT	🗟 Print 🔤 Email

Post-Quantum Approach

- Believed to be hard for quantum computers.
- Versatile: Can essentially construct all cryptosystems out of these assumptions.
- Candidates: Lattice-based Crypto, Hash-based Crypto, codebased, etc.

What's a Lattice?

• A periodic 'grid' in \mathbb{Z}^m (Formally: full-rank additive subgroup.)

What's a Lattice?

- A periodic 'grid' in \mathbb{Z}^m (Formally: full-rank additive subgroup.)
- Basis $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_m\}$
- Lattice = $\sum_{j=1}^{m} \mathbf{Z} \cdot \mathbf{b}_{j}$

What's a Lattice?

- A periodic 'grid' in \mathbb{Z}^m (Formally: full-rank additive subgroup.)
- Basis $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_m\}$
- Lattice = $\sum_{j=1}^{m} \mathbf{Z} \cdot \mathbf{b}_{j}$

(Other representations too . . .)

Hard Lattice Problem: Learning With Errors (LWE) [Regev'05]

There is a secret vector s in Z_p^n (we'll use Z_{17}^4 as a running example)

An oracle (who knows s) generates a random vector a in \mathbb{Z}_p^n and "small" noise element e in Z The oracle outputs (a b-da solo mod 17)

The oracle outputs (a,b=<a,s>+e mod 17)

This procedure is repeated with the same s and fresh a and e

There is a secret vector s in Z_p^n (we'll use Z_{17}^4 as a running example) An oracle (who knows s) generates a random vector a in Z_p^n and "<u>small</u>" noise element e in Z.

The oracle outputs (a,b=<a,s>+e mod 17)

This procedure is repeated with the same s and fresh a and e

There is a secret vector **s** in \mathbb{Z}_p^n (we'll use \mathbb{Z}_{17}^4 as a running example) An oracle (who knows **s**) generates a random vector **a** in \mathbb{Z}_p^n and "<u>small</u>" noise element **e** in Z.

The oracle outputs $(a, b = \langle a, s \rangle + e \mod p)$

This procedure is repeated with the same s and fresh a and e

There is a secret vector s in \mathbb{Z}_p^n (we'll use \mathbb{Z}_{17}^4 as a running example) An oracle (who knows s) generates a random vector a in \mathbb{Z}_p^n and "<u>small</u>" noise element e in Z.

The oracle outputs $(a, b = \langle a, s \rangle + e \mod p)$

This procedure is repeated with the same s and fresh a and e

There is a secret vector **s** in \mathbb{Z}_p^n (we'll use \mathbb{Z}_{17}^4 as a running example) An oracle (who knows **s**) generates a random vector **a** in \mathbb{Z}_p^n and "<u>small</u>" noise element **e** in Z.

The oracle outputs $(a, b = \langle a, s \rangle + e \mod p)$

This procedure is repeated with the same s and fresh a and e

LWE Instance
A,
$$\vec{b} = A\vec{s} + \vec{e} \mod p$$

Once there are enough a_i , the s is uniquely determined

Theorem [Regev '05] : There is a polynomial-time quantum reduction from solving certain lattice problems in the worst-case to solving LWE.

Decisional LWE Problem

LWE is Versatile

- What kinds of crypto can we do with LWE?
 - Key Exchange, Public Key Encryption
 - Oblivious Transfer
 - Actively Secure Encryption (w/o random oracles)
 - Block Ciphers, Pseudorandom Functions
 - Identity-Based Encryption (w/RO)
 - Hierarchical ID-Based Encryption (w/o RO)
 - Fully Homomorphic Encryption
 - Attribute-Based Encryption for arbitrary policies
 - and much, much more. .

Nonsecret value in blue and secret value in red.

- 1. Client and Server agree on the algorithm parameters g and p
- 2. Client and Server generate their own private keys, named y and x, respectively
 - B. Server computes g^x and sends it to Client.
- 4. Client computes g^{γ} and sends it to Server.
- 5. Client computers $(g^x)^y$ and uses it as its secret.
- 6. Server computers $(g^{\gamma})^{x}$ and uses it as its secret.

Nonsecret value in blue and secret value in red.

- 1. Client and Server agree on the algorithm parameters g and p
- 2. Client and Server generate their own private keys, named *y* and *x*, respectively

. Server computes g^x and sends it to Client.

. Client computes g^{γ} and sends it to Server.

5. Client computers $(g^x)^y$ and uses it as its secret.

6. Server computers $(g^{\gamma})^{x}$ and uses it as its secret.

Nonsecret value in blue and secret value in red.

- 1. Client and Server agree on the algorithm parameters g and p
- 2. Client and Server generate their own private keys, named *y* and *x*, respectively
- 3. Server computes g^{x} and sends it to Client.
- 4. Client computes g^{γ} and sends it to Server.
- 5. Client computers $(g^x)^y$ and uses it as its secret.
- 6. Server computers $(g^{\gamma})^x$ and uses it as its secret.

Nonsecret value in blue and secret value in red.

- 1. Client and Server agree on the algorithm parameters g and p
- 2. Client and Server generate their own private keys, named *y* and *x*, respectively
- 3. Server computes g^{χ} and sends it to Client.
- 4. Client computes g^{γ} and sends it to Server.
- 5. Client computers $(g^{x})^{y}$ and uses it as its secret.
- 6. Server computers $(g^{\gamma})^{x}$ and uses it as its secret.

Nonsecret value in blue and secret value in red.

- 1. Client and Server agree on the algorithm parameters g and p
- 2. Client and Server generate their own private keys, named *y* and *x*, respectively
- 3. Server computes g^{x} and sends it to Client.
- 4. Client computes g^{γ} and sends it to Server.
- 5. Client computers $(g^{\chi})^{\gamma}$ and uses it as its secret.
- 6. Server computers $(g^{\gamma})^{x}$ and uses it as its secret.

Slides modified from https://sites.google.com/site/valerianikolaenko/

[Pei14] C. Peikert. Lattice cryptography for the Internet. In Post-Quantum Cryptography. Springer, 2014 [DXL12] Ding, J., Xie, X., Lin, X. A Simple Provably Secure Key Exchange Scheme Based on the Learning with Errors Problem. *https://eprint.jacr.org/2012/688*

LWE key exchange [DXL12]

Parameter A Client Server Choose Choose random random small small vectors x, e vectors *y*,*e*′

LWE key exchange [DXL12]

Diffie-Hellman key exchange Parameters *g*, p Client Server Choose Choose random random γ g^x X g^y g^{xy} Attacker sees g, g^{x}, g^{y} ,

but cannot sees x, y, g^{xy} . In the view of attacker g^{xy} looks like random

Diffie-Hellman key exchange

LWE key exchange [DXL12]

Key Exchange Implementation

- NewHope [ADPS'15]: Ring-LWE key exchange *a la* [LPR'10,P'14],
 - with many optimizations and conjectured \geq 200-bit quantum security.
 - Comparable to or even faster than state-of-the-art ECDH w/ 128-bit (nonquantum) security.
 - Google has experimentally deployed NewHope+ECDH in Chrome canary and its own web servers.
- Frodo [BCDMNNRS'16]: Plain-LWE key exchange,
 - with many tricks and optimizations. Conjectured \geq 128-bit quantum security.
 - About 10x slower than NewHope, but only ≈2x slower than ECDH

• Our goal:

Given a pair (A, \vec{b}) , want to know whether it is generated as $A, \vec{b} = A\vec{s} + \vec{e} \mod p$ OR $A, \vec{b} = random$

- Dual Attack:
 - If we can find a <u>short</u> vector \vec{w} such that $\vec{w} A \mod p = 0$,
 - Then compute inner product $\langle \vec{w}, \vec{b} \rangle$

• Our goal:

Given a pair (A, \vec{b}) , want to know whether it is generated as

 $A, \vec{b} = A\vec{s} + \vec{e} \mod p \qquad \text{OR} \qquad A, \vec{b} = random$ $\vec{w} \cdot \vec{b} \qquad \qquad \vec{w} \cdot \vec{b}$

• Our goal:

Given a pair (A, \vec{b}) , want to know whether it is generated as $A, \vec{b} = A\vec{s} + \vec{e} \mod p$ $A, \vec{b} = random$ OR $\vec{w} \cdot \vec{b} = \vec{w}(A\vec{s} + \vec{e})$ $\vec{w} \cdot \vec{b}$

• Our goal:

Given a pair (A, \vec{b}) , want to know whether it is generated as $A, \vec{b} = random$ $A, \vec{b} = A\vec{s} + \vec{e} \mod p$ OR $\vec{w} \cdot \vec{b}$ $\vec{w}\cdot\vec{b}$ $= \vec{w}(A\vec{s} + \vec{e})$ $= (\vec{w}A)\vec{s} + \vec{w} \cdot \vec{e}$

• Our goal:

Given a pair (A, \vec{b}) , want to know whether it is generated as $A, \vec{b} = random$ $A, \vec{b} = A\vec{s} + \vec{e} \mod p$ OR $\vec{w} \cdot \vec{b}$ $\vec{w}\cdot\vec{b}$ $= \vec{w}(A\vec{s} + \vec{e})$ $= (\vec{w}A)\vec{s} + \vec{w}\cdot\vec{e}$ $= \vec{w} \cdot \vec{e}$ = small

• Our goal:

Given a pair (A, \vec{b}) , want to know whether it is generated as $A, \vec{b} = A\vec{s} + \vec{e} \mod p$ $A, \vec{b} = random$ OR $\vec{w}\cdot\vec{h}$ $\vec{w} \cdot \vec{b}$ $= \vec{w}(A\vec{s} + \vec{e})$ = random $= (\vec{w}A)\vec{s} + \vec{w}\cdot\vec{e}$ $= \vec{w} \cdot \vec{e}$ = small

• Our goal:

Given a pair (A, \vec{b}) , want to know whether it is generated as $A, \vec{b} = random$ $A, \vec{b} = A\vec{s} + \vec{e} \mod p$ OR $\vec{w} \cdot \vec{b}$ $\vec{w} \cdot \vec{b}$ $= \vec{w}(A\vec{s} + \vec{e})$ = random $= (\vec{w}A)\vec{s} + \vec{w}\cdot\vec{e}$ $= \vec{w} \cdot \vec{e}$ = small small

• Our goal:

Given a pair (A, \vec{b}) , want to know whether it is generated as

 $A, \vec{b} = A\vec{s} + \vec{e} \mod p$ OR $A, \vec{b} = random$

- If we can find a <u>short</u> vector \vec{w} such that $w A \mod p = 0$,
- Then compute inner product $\langle \vec{w}, \vec{b} \rangle$
- Wait...That sounds very easy to attack, why LWE is hard?

• Our goal:

Given a pair (A, \vec{b}) , want to know whether it is generated as $A, \vec{b} = A\vec{s} + \vec{e} \mod p$ OR $A, \vec{b} = random$

• If we can find a <u>short</u> vector \vec{w} such that $\vec{w} A \mod p = 0$,

- Then compute inner product $\langle \vec{w}, \vec{b} \rangle$
- Wait...That sounds very easy to attack, why LWE is hard?

• For more...check

Short Integer Solution Problem!

Thank You

Questions?

