SQL injection
countermeasures

The underlying issue

$result = mysql query(“select * from Users :
where (name='Suser’ and password=‘Spass’);”);:

- This one string combines the_code and the data

- Similar to buffer overflows

\/

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

The underlying issue

ESresult = mysqgl query(“select * from Users :
: where (name=‘Suser’ and password=‘$pass’);”) ;i

select / from / where

Should be
data, not code

password

Prevention: Input validation

- We require input of a certain form, but we cannot
guarantee it has that form, so we must validate it

- Just like we do to avoid buffer overflows

- Making input trustworthy
- Check it has the expected form, reject it if not

- Sanitize by modifying it or using it such that the
result is correctly formed

Sanitization: Blacklisting

- Delete the characters you don’t want

- Downside: “Lupita Nyong’o”

- You want these characters sometimes!

- How do you know if/when the characters are bad?
- Downside: How to know you’ve ID’d all bad chars?

Sanitization: Escaping

- Replace problematic characters with safe ones

- Change " to \’
- Change ; to \;
- Change - to \ -
- Change \ to \\

- Hard by hand, there are many libs & methods

- maglic quotes gpc = On

- mysgl real escape string()

- Downside: Sometimes you want these in your SQL!

- And escaping still may not be enough

Checking: Whitelisting

- Check that the user input is known to be safe

- E.g., integer within the right range

- Rationale: Given invalid input, safer to reject than fix

- “Fixes” may result in wrong output, or vulnerabilities
- Principle of fail-safe defaults

- Downside: Hard for rich input!

. How to whitelist usernames? First names?

Sanitization via escaping, whitelisting,
blacklisting is HARD.

Can we do better?

Sanitization: Prepared statements

- Treat user data according to its type
- Decouple the code and the data

§$result = mysqgl query("select * from Users :
: where (name='Suser’ and password=‘Spass’);") ;i

Sdb = new mysqgl ("localhost", "user", "pass", "DB");
Sstatement = $db->prepare("select * from Users

where (name=? and password=?);"); B|nd Variables

$statement->bind param("ss", Suser, S$pass);

Sstatement->execute () ; Bind variables are typed

Usmg prepared statements

where (name="? and password=?);");
§$Stmt—>bind_param("ss", Suser, S$Spass);

select / from / where

password

Binding is only applied to the leaves,
so the structure of the tree is fixed

Takeaways: Verify before
trust

- Improperly validated input causes many attacks

. Common to solutions: check or sanitize all data

- Whitelisting: More secure than blacklisting
- Checking: More secure than sanitization
- Proper sanitization is hard
- All data: Are you sure you found all inputs?
- Don’t roll your own: libraries, frameworks, etc.

Static Analysis

With material from Dave
Levin, Mike Hicks, Dawson
Engler, Lujo Bauer, Michelle

Mazurek

http://philosophyofscienceportal.blogspot.com/2013/04/van-de-graaff-generator-redux.html

http://philosophyofscienceportal.blogspot.com/2013/04/van-de-graaff-generator-redux.html

Static analysis

Current Practice

for Software Assurance

::> Is it correct?

register char *q;
char inp[MAXLINE];
- char cmdbuf[MAXLINE];
extern ENVELOPE BlankEnvelope;
| n u S extern void help_P(char) O u u S
extern void settime __P((ENVELOPE *));
extern bool enoughdiskspace __P((long));
extern int runinchild __P((char * ENVELOPE *));

program

- Testing: Check correctness on set of inputs
- Benefits: Concrete failure proves issue, aids fix

- Drawbacks: Expensive, difficult, coverage?
- NoO guarantees

Current Practice

(continued)

- Code audit: Convince someone your code Is correct
- Benefit: Humans can generalize

- Drawbacks: Expensive, hard, no guarantees

W UISIOLUULTAIIE = TIEI0WOuY)

{
1 arrange for debugging output to go to remote host */
(void) dup2(fileno(OutChannel), fileno(stdout));

}
settime(e);
peerhostname = RealHostName;

CurHostName = peerhostname;

CurSmtpClient = macvalue(_, €);
if (CurSmtpClient == NULL)
CurSmtpClient = CurHostName;

setproctitle(“server %s startup”, CurSmtpClient);
#if DAEMON
if (LogLevel >11)

1 log connection information */
sm_syslog(LOG_INFO, NOQID,

"SMTP connect from 9.1005 (%.1005)",
CurSmtpClient, anynet_ntoa(&RealHostAddr));

}
#endif

1 output the first line, inserting "ESMTP" as second word */
expand(SmtpGreeting, inp, sizeof inp, €);
p = strchr(inp, n);
if (p 1= NULL)
*ph+ =0,
id = strehr(inp, *;

if (id
id = &inp[strlen(inp)];

omd =p == NULL ?"220 %.* ESMTP9%s" : "220-%.* ESMTP%s";

message(cmd, id - inp, inp, id):

1 output remaining lines */
while ((id = p) '= NULL && (p = strchr(id, n)) != NULL)
{

e =107

if (isascii(*id) && isspace(*id))

v
if (tstreasecmp(c->cmdname, cmdbuf)
break;

set errors */

1* re:
ermo =

** Process command.

If we are running as a null server, return 550
to everything

R 3 4

if (nullserver)
switch (c->cmdcode)

case CMDQUIT:
case CMDHELO:

case CMDEHLO:

case CMDNOOP:

1* process normally */
break;

default:
if (++badcommands > MAXBADCOMMANDS)
sleep(1);
usrerr("550 Access denied");
continue;
}
3

1% non-null server */
switch (c->cmdcode)

case CMDMAIL:
case CMDEXPN:
case CMDVRFY:

{
s =0
w=p;
1* skip to the end of the value */
while (p 1=10' && *p 1="" &&
(isascii(*p) && iscrtrl(*p)) &&
by

pre

if (*p 1="0)
s =0

if (Td(19, 1))
Prtf("RCPT: got arg %s=\"%s\"\n", kp,
vp == NULL 2 "<null>" : vp);

rept_esmtp_args(a, kp, vp,
if (Errors > 0)
break;

if (Errors > 0)
break;

J* save in recipient list after ESMTP mods */
a = recipient(a, &e->e_sendqueue, 0, €);
if (Errors > 0)

break;

1% o errors during parsing, but might be a duplicate */
e->e_to = a->q_paddr;

if (itset(QBADADDR, a->q_flags))

{

message("250 Recipient ok%s",

bitset(QQUEUEUP, a->q_flags) ?

 (will queue)” :
nrepts++;

else

1% punt - should keep message in ADDRESS.... */

. How can we do better?

Static analysis

- Analyze program’s code without running it
- In a sense, ask a computer to do code review

- Benefit: (much) higher coverage

- Reason about many possible runs of the program
- Sometimes all of them, providing a guarantee

- Reason about incomplete programs (e.qg., libraries)

- Drawbacks:

. Can only analyze limited properties
- May miss some errors, or have false alarms
- Can be time- and resource-consuming

The Halting Problem
j} Always terminates?

extern ENVELOPE BlankEnvelope;

program P

- Can we write an analyzer that can prove, for any
program P and inputs to it, P will terminate?

- Doing so Is called the halting problem

- Unfortunately, this is undecidable: any analyzer
will fail to produce an answer for at least some
programs and/or inputs

Some material inspired by work of Matt Might: http://matt.might.net/articles/intro-static-analysis/

http://matt.might.net/articles/intro-static-analysis/

Check other properties instead?

Perhaps security-related properties are feasible
E.g., that all accesses a [i] are in bounds

- That a certain line of code Is reachable

But these properties can be converted into the halting
problem by transforming the program

- A perfect array bounds checker could solve the halting
problem, which is impossible!

. Other undecidable properties (Rice’s theorem)
Does this SQL string come from a tainted source?
s this pointer used after its memory is freed?

DO any variables experience data races?

So Is static analysis impossible?

- Perfect static analysis Is not possible

- Useful static analysis iIs perfectly possible, despite

1. Nontermination - analyzer never terminates, or
2. False alarms - claimed errors are not really errors, or

3. Missed errors - no error reports # error free

- Nonterminating analyses are confusing, so tools tend
to exhibit only false alarms and/or missed errors

Completeness Soundness

If analysis says that If X is true, then
X Is true, then X is analysis says X Is
true. true.

True things Things | say

Trivially Complete: Say nothing Trivially Sound: Say everything

Sound and Complete:
Say exactly the set of true things

Stepping back

- Soundness: No error found = no error exists

- Alarms may be false errors

- Completeness: Any error found = real error

- Silence does not guarantee no errors

Basically any useful analysis
- 1S neither sound nor complete (def. not both)
... usually leans one way or the other

Adding some depth:
Taint (flow) analysis

Tainted Flow Analysis

. Cause of many attacks is trusting unvalidated input
- Input from the user (network, file) Is tainted
- Various data Is used, assuming it iIs untainted

. Examples expecting untainted data
. source string of strcpy (= target buffer size)

- format string of printf (contains no format
specifiers)

- form field used in constructed SQL gquery (contains
no SQL commands)

Recall: Format String Attack

- Adversary-controlled format string

char *name = fgets(.., network fd);
printf (name) ; // Oops

. Attacker sets name = "$s%$s%s * to crash program
. Attacker sets name = "$n" to write to memory
- Yields code injection exploits

- These bugs still occur in the wild occasionally
- Too restrictive to forbid non-constant format strings

The problem, In types

- Specify our requirement as a type gqualifier

int printf (untainted char *fmt, ..);
tainted char *fgets(..);

- tainted = possibly controlled by adversary
- untainted = must not be controlled by adversary

tainted char *name = fgets(..,network fd);
printf (name) ; // FAIL: talinted # untainted

Analyzing taint flows

- Goal: For all possible inputs, prove tainted data will never be
used where untainted data is expected

- untainted annotation: indicates a trusted sink
- tainted annotation: an untrusted source

- N0 annotation means: not sure (analysis must figure it out)

- Solution requires inferring flows In the program
- What sources can reach what sinks

If any flows are illegal, i.e., whether a tainted source may
flow to an untainted sink

- We will aim to develop a sound analysis

Legal Flow lllegal Flow

void f (tainted int); vold g(untalnted 1nt);
untainted int a = ..; tainted int b = ..;
f(a); g(b);
f accepts tainted or untainted data g accepts only untainted data
untainted < tainted tainted € untainted

Define allowed flow as a

i untainted < tainted
lattice:

At each program step, test whether inputs < policy

Analysis Approach

If no qualifier is present, we must infer it

. Steps:

- Create a name for each missing qualifier (e.g., a, 3)
For each program statement, generate constraints
. Statement x = y generates constraint g, < g-
- Solve the constraints to produce solutions for a, (3, etc.

- A solution Is a substitution of qualifiers (like tainted or
untainted) for names (like a and (3) such that all of the
constraints are legal flows

If there is no solution, we (may) have an illegal flow

Example Analysis

int printf (untainted char *fmt, ..);
tainted char *fgets(x.),

&/ |

(:><::'a char *name = fgets (., network fd)}

B char *x = name;
printf (x);
®
(D tainted < a lllegal flow!
@ as No possible solution for
@ B < untainted o and B

First constraint requires a = tainted
To satisfy the second constraint implies 3 = tainted
But then the third constraint is illegal: tainted < untainted

Taint Analysis: |
Adding ’ ¥
Sensitivity = N\ &

But what about?

int printf (untainted char *fmt, ..);
tailnted char *fgets(..);

a char *name = fgets (., network fd);
B char *x;

X = name;

x = "hello!";

printf (x) ;

tainted < a
as . .
untainted < B No constraint solution. Bug?

B < untainted Fa|Se Alarml

Flow Sensitivity

Our analysis is flow insensitive
Each variable has one qualifier
Conflates the taintedness of all values it ever contains

Flow-sensitive analysis accounts for variables whose contents change
Allow each assigned use of a variable to have a different qualifier

E.g., a1 is x’s qualifier at line 1, but az is the qualifier at line 2,
where a1 and a2 can differ

Could implement this by transforming the program to assign to a
variable at most once

Reworked Example

int printf (untainted char *fmt, ..);
tailnted char *fgets(..);

—|a char *name = fgets (.., network fd);
char B *x1, Y *xZ2;
X1 = name;

xZ2 = "hello!";
printf (x2);

tainted < a

as<f No Alarm
untainted <y Good solution exists:
Y < untainted Yy = untainted

a = 3 = tainted

Handling conditionals

int printf (untainted char *fmt, ..);
tailnted char *fgets(..);

—|a char *name = fgets (.., network fd);
B char *x;

1t (..) X = name;

else Xx = "hello!";

printf (x);

tainted < a

as<f . :

_ Constraints still unsolvable

—thtatnted<5—

lllegal flow

B < untainted

Multiple Conditionals

int printf (untainted char *fmt,
talnted char *fgets/(..);

void f (int x) {
a char *y;

— 1f (x) y = "hello!";
else y = fgets (.., network fd);
1f (x) printf(y):

}

—tHtathted—<o—
tainted £ a

No solution for a. Bug?

False Alarm!

a < untainted L
(and flow sensitivity won't help)

Path Sensitivity

Consider path feasibility. E.g., £ (x) can execute path
. 1-2-4-5-6 when x # 0, or void f(int x) {
1-3-4-6 when x == 0. But, char "y

' | | . 2y = “hello!”;
. path 1-3-4-5-6 infeasible s y = fgets(.);
printf (y);
6

- A path sensitive analysis checks feasibllity, e.qg., by
gualifying each constraint with a path condition

. X # 0= untainted<a (segment 1-2)
x = 0= tainted <a (segment 1-3)
x # 0 = a<untainted (segment 4-5)

Static analysis In

practice
('COV@I‘ity“’ @GRAMMATECH @:ortify

A Synopsys Company

clang

:o&i:indBugs sar}&alyzer W Joern

LLVM KLEE

Caveat: appearance in the above list is not an implicit endorsement, and these are only a sample of available offerings

