
SQL injection
countermeasures

The underlying issue

• This one string combines the code and the data

• Similar to buffer overflows

$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

The underlying issue
$result = mysql_query(“select * from Users

where(name=‘$user’ and password=‘$pass’);”);

select / from / whereselect / from / where

** UsersUsers andand

==

namename $user$user

==

passwordpassword $pass$pass$user$user

Should be
data, not code
Should be
data, not code

Prevention: Input validation

• We require input of a certain form, but we cannot
guarantee it has that form, so we must validate it

• Just like we do to avoid buffer overflows

• Making input trustworthy

• Check it has the expected form, reject it if not

• Sanitize by modifying it or using it such that the
result is correctly formed

Sanitization: Blacklisting

• Delete the characters you don’t want

• Downside: “Lupita Nyong’o”

• You want these characters sometimes!

• How do you know if/when the characters are bad?

• Downside: How to know you’ve ID’d all bad chars?

’ --;

Sanitization: Escaping
• Replace problematic characters with safe ones

• Change ’ to \’

• Change ; to \;

• Change - to \-

• Change \ to \\

• Hard by hand, there are many libs & methods

• magic_quotes_gpc = On

• mysql_real_escape_string()

• Downside: Sometimes you want these in your SQL!

• And escaping still may not be enough

Checking: Whitelisting

• Check that the user input is known to be safe

• E.g., integer within the right range

• Rationale: Given invalid input, safer to reject than fix

• “Fixes” may result in wrong output, or vulnerabilities

• Principle of fail-safe defaults

• Downside: Hard for rich input!

• How to whitelist usernames? First names?

Can we do better?

Sanitization via escaping, whitelisting,
blacklisting is HARD.

Sanitization: Prepared statements
• Treat user data according to its type

• Decouple the code and the data

$db = new mysql("localhost", "user", "pass", "DB");

$statement = $db->prepare("select * from Users
where(name=? and password=?);");

$statement->bind_param("ss", $user, $pass);
$statement->execute();

$result = mysql_query("select * from Users
where(name=‘$user’ and password=‘$pass’);");

Bind variables

Bind variables are typed

$statement = “select * from Users
where(name=‘$user’ and password=‘$pass’);”;

Using prepared statements
$statement = $db->prepare("select * from Users

where(name=? and password=?);");
$stmt->bind_param("ss", $user, $pass);

select / from / whereselect / from / where

** UsersUsers andand

==

namename ??

==

passwordpassword ??

Binding is only applied to the leaves,
so the structure of the tree is fixed

$user$user $pass$pass
frank’
OR 1=1);
--

Takeaways: Verify before
trust

• Improperly validated input causes many attacks

• Common to solutions: check or sanitize all data

• Whitelisting: More secure than blacklisting

• Checking: More secure than sanitization

• Proper sanitization is hard

• All data: Are you sure you found all inputs?

• Don’t roll your own: libraries, frameworks, etc.

Static Analysis
With material from Dave

Levin, Mike Hicks, Dawson

Engler, Lujo Bauer, Michelle

Mazurek

http://philosophyofscienceportal.blogspot.com/2013/04/van-de-graaff-generator-redux.html

http://philosophyofscienceportal.blogspot.com/2013/04/van-de-graaff-generator-redux.html

Static analysis

Current Practice

• Testing: Check correctness on set of inputs

• Benefits: Concrete failure proves issue, aids fix

• Drawbacks: Expensive, difficult, coverage?

• No guarantees

inputs outputs

program

Is it correct?

oracle

register char *q;

char inp[MAXLINE];

char cmdbuf[MAXLINE];

extern ENVELOPE BlankEnvelope;

extern void help __P((char *));

extern void settime __P((ENVELOPE *));

extern bool enoughdiskspace __P((long));

extern int runinchild __P((char *, ENVELOPE *));

.

.

.

for Software Assurance

register char *q;

char inp[MAXLINE];

char cmdbuf[MAXLINE];

extern ENVELOPE BlankEnvelope;

extern void help __P((char *));

extern void settime __P((ENVELOPE *));

extern bool enoughdiskspace __P((long));

extern int runinchild __P((char *, ENVELOPE *));

extern void checksmtpattack __P((volatile int *, int, char *, ENVELOPE *));

if (fileno(OutChannel) != fileno(stdout))

{

/* arrange for debugging output to go to remote host */

(void) dup2(fileno(OutChannel), fileno(stdout));

}

settime(e);

peerhostname = RealHostName;

if (peerhostname == NULL)

peerhostname = "localhost";

CurHostName = peerhostname;

CurSmtpClient = macvalue('_', e);

if (CurSmtpClient == NULL)

CurSmtpClient = CurHostName;

setproctitle("server %s startup", CurSmtpClient);

#if DAEMON

if (LogLevel > 11)

{

/* log connection information */

sm_syslog(LOG_INFO, NOQID,

"SMTP connect from %.100s (%.100s)",

CurSmtpClient, anynet_ntoa(&RealHostAddr));

}

#endif

/* output the first line, inserting "ESMTP" as second word */

expand(SmtpGreeting, inp, sizeof inp, e);

p = strchr(inp, '\n');

if (p != NULL)

*p++ = '\0';

id = strchr(inp, ' ');

if (id == NULL)

id = &inp[strlen(inp)];

cmd = p == NULL ? "220 %.*s ESMTP%s" : "220-%.*s ESMTP%s";

message(cmd, id - inp, inp, id);

/* output remaining lines */

while ((id = p) != NULL && (p = strchr(id, '\n')) != NULL)

{

*p++ = '\0';

if (isascii(*id) && isspace(*id))

cmd < &cmdbuf[sizeof cmdbuf - 2])

*cmd++ = *p++;

*cmd = '\0';

/* throw away leading whitespace */

while (isascii(*p) && isspace(*p))

p++;

/* decode command */

for (c = CmdTab; c->cmdname != NULL; c++)

{

if (!strcasecmp(c->cmdname, cmdbuf))

break;

}

/* reset errors */

errno = 0;

/*

** Process command.

**

** If we are running as a null server, return 550

** to everything.

*/

if (nullserver)

{

switch (c->cmdcode)

{

case CMDQUIT:

case CMDHELO:

case CMDEHLO:

case CMDNOOP:

/* process normally */

break;

default:

if (++badcommands > MAXBADCOMMANDS)

sleep(1);

usrerr("550 Access denied");

continue;

}

}

/* non-null server */

switch (c->cmdcode)

{

case CMDMAIL:

case CMDEXPN:

case CMDVRFY:

while (isascii(*p) && isspace(*p))

p++;

if (*p == '\0')

break;

kp = p;

/* skip to the value portion */

while ((isascii(*p) && isalnum(*p)) || *p == '-')

p++;

if (*p == '=')

{

*p++ = '\0';

vp = p;

/* skip to the end of the value */

while (*p != '\0' && *p != ' ' &&

!(isascii(*p) && iscntrl(*p)) &&

*p != '=')

p++;

}

if (*p != '\0')

*p++ = '\0';

if (tTd(19, 1))

printf("RCPT: got arg %s=\"%s\"\n", kp,

vp == NULL ? "<null>" : vp);

rcpt_esmtp_args(a, kp, vp, e);

if (Errors > 0)

break;

}

if (Errors > 0)

break;

/* save in recipient list after ESMTP mods */

a = recipient(a, &e->e_sendqueue, 0, e);

if (Errors > 0)

break;

/* no errors during parsing, but might be a duplicate */

e->e_to = a->q_paddr;

if (!bitset(QBADADDR, a->q_flags))

{

message("250 Recipient ok%s",

bitset(QQUEUEUP, a->q_flags) ?

" (will queue)" : "");

nrcpts++;

}

else

{

/* punt -- should keep message in ADDRESS.... */

Current Practice

• Code audit: Convince someone your code is correct

• Benefit: Humans can generalize

• Drawbacks: Expensive, hard, no guarantees

???

(continued)

• How can we do better?

Static analysis
• Analyze program’s code without running it

• In a sense, ask a computer to do code review

• Benefit: (much) higher coverage

– Reason about many possible runs of the program

– Sometimes all of them, providing a guarantee

– Reason about incomplete programs (e.g., libraries)

• Drawbacks:

• Can only analyze limited properties

• May miss some errors, or have false alarms

• Can be time- and resource-consuming

The Halting Problem

• Can we write an analyzer that can prove, for any

program P and inputs to it, P will terminate?

• Doing so is called the halting problem

• Unfortunately, this is undecidable: any analyzer

will fail to produce an answer for at least some

programs and/or inputs

program P analyzer

Always terminates?
register char *q;

char inp[MAXLINE];

char cmdbuf[MAXLINE];

extern ENVELOPE BlankEnvelope;

extern void help __P((char *));

extern void settime __P((ENVELOPE *));

extern bool enoughdiskspace __P((long));

extern int runinchild __P((char *, ENVELOPE *));

.

.

.

Some material inspired by work of Matt Might: http://matt.might.net/articles/intro-static-analysis/

http://matt.might.net/articles/intro-static-analysis/

Check other properties instead?

• Perhaps security-related properties are feasible

• E.g., that all accesses a[i] are in bounds

• That a certain line of code is reachable

• But these properties can be converted into the halting
problem by transforming the program

• A perfect array bounds checker could solve the halting
problem, which is impossible!

• Other undecidable properties (Rice’s theorem)

• Does this SQL string come from a tainted source?

• Is this pointer used after its memory is freed?

• Do any variables experience data races?

So is static analysis impossible?

• Perfect static analysis is not possible

• Useful static analysis is perfectly possible, despite

1. Nontermination - analyzer never terminates, or

2. False alarms - claimed errors are not really errors, or

3. Missed errors - no error reports ≠ error free

• Nonterminating analyses are confusing, so tools tend

to exhibit only false alarms and/or missed errors

Things I say

Completeness Soundness

Things I say True things

True things

Trivially Complete: Say nothing Trivially Sound: Say everything

If analysis says that

X is true, then X is

true.

If X is true, then

analysis says X is

true.

Sound and Complete:

Say exactly the set of true things

Things I say

are all

True things

Stepping back

• Soundness: No error found = no error exists

• Alarms may be false errors

• Completeness: Any error found = real error

• Silence does not guarantee no errors

• Basically any useful analysis

• is neither sound nor complete (def. not both)

• … usually leans one way or the other

Adding some depth:

Taint (flow) analysis

Tainted Flow Analysis

• Cause of many attacks is trusting unvalidated input

• Input from the user (network, file) is tainted

• Various data is used, assuming it is untainted

• Examples expecting untainted data

• source string of strcpy (≤ target buffer size)

• format string of printf (contains no format

specifiers)

• form field used in constructed SQL query (contains

no SQL commands)

Recall: Format String Attack

• Adversary-controlled format string

• Attacker sets name = "%s%s%s “ to crash program

• Attacker sets name = "%n" to write to memory

• Yields code injection exploits

• These bugs still occur in the wild occasionally

• Too restrictive to forbid non-constant format strings

char *name = fgets(.., network_fd);

printf(name); // Oops

The problem, in types

• Specify our requirement as a type qualifier

• tainted = possibly controlled by adversary

• untainted = must not be controlled by adversary

int printf(untainted char *fmt, ..);

tainted char *fgets(..);

tainted char *name = fgets(..,network_fd);

printf(name); // FAIL: tainted ≠ untainted

Analyzing taint flows
• Goal: For all possible inputs, prove tainted data will never be

used where untainted data is expected

• untainted annotation: indicates a trusted sink

• tainted annotation: an untrusted source

• no annotation means: not sure (analysis must figure it out)

• Solution requires inferring flows in the program

• What sources can reach what sinks

• If any flows are illegal, i.e., whether a tainted source may

flow to an untainted sink

• We will aim to develop a sound analysis

Legal Flow
void f(tainted int);

untainted int a = ..;

f(a);

f accepts tainted or untainted data g accepts only untainted data

untainted ≤ tainted

void g(untainted int);

tainted int b = ..;

g(b);

Define allowed flow as a

lattice:

tainted ≤ untainted

tainteduntainted <

Illegal Flow

At each program step, test whether inputs ≤ policy

Analysis Approach
• If no qualifier is present, we must infer it

• Steps:

• Create a name for each missing qualifier (e.g., α, β)

• For each program statement, generate constraints

• Statement x = y generates constraint qy ≤ qx

• Solve the constraints to produce solutions for α, β, etc.

• A solution is a substitution of qualifiers (like tainted or

untainted) for names (like α and β) such that all of the

constraints are legal flows

• If there is no solution, we (may) have an illegal flow

printf(x);

int printf(untainted char *fmt, ..);

tainted char *fgets(..);

tainted ≤ α

α ≤ β

β ≤ untainted

α

β

char *name = fgets(.., network_fd);

char *x = name;

Illegal flow!

No possible solution for

α and β

Example Analysis

First constraint requires α = tainted

To satisfy the second constraint implies β = tainted

But then the third constraint is illegal: tainted ≤ untainted

1

1

2

2

3

3

Taint Analysis:

Adding

Sensitivity

But what about?
int printf(untainted char *fmt, ..);

tainted char *fgets(..);

char *name = fgets(.., network_fd);

char *x;

x = name;

x = "hello!";

printf(x);

α
β

tainted ≤ α

α ≤ β

β ≤ untainted

untainted ≤ β

→

False Alarm!

No constraint solution. Bug?

Flow Sensitivity

• Our analysis is flow insensitive

• Each variable has one qualifier

• Conflates the taintedness of all values it ever contains

• Flow-sensitive analysis accounts for variables whose contents change

• Allow each assigned use of a variable to have a different qualifier

• E.g., α1 is x’s qualifier at line 1, but α2 is the qualifier at line 2,

where α1 and α2 can differ

• Could implement this by transforming the program to assign to a

variable at most once

Reworked Example
int printf(untainted char *fmt, ..);

tainted char *fgets(..);

char *name = fgets(.., network_fd);

char *x1, *x2;

x1 = name;

x2 = "hello!";

printf(x2);

α

tainted ≤ α

α ≤ β

γ ≤ untainted

untainted ≤ γ

→

No Alarm
Good solution exists:

γ = untainted

α = β = tainted

γβ

Handling conditionals
int printf(untainted char *fmt, ..);

tainted char *fgets(..);

char *name = fgets(.., network_fd);

char *x;

if (..) x = name;

else x = "hello!";

printf(x);

α
β

tainted ≤ α

α ≤ β

β ≤ untainted

untainted ≤ β

→

Constraints still unsolvable

Illegal flow

Multiple Conditionals
int printf(untainted char *fmt, ..);

tainted char *fgets(…);

void f(int x) {

char *y;

if (x) y = "hello!";

else y = fgets(.., network_fd);

if (x) printf(y);

}

α

tainted ≤ α

α ≤ untainted

untainted ≤ α

→

No solution for α. Bug?

False Alarm!
(and flow sensitivity won’t help)

Path Sensitivity

• Consider path feasibility. E.g., f(x) can execute path

• 1-2-4-5-6 when x ≠ 0, or

• 1-3-4-6 when x == 0. But,

• path 1-3-4-5-6 infeasible

• A path sensitive analysis checks feasibility, e.g., by

qualifying each constraint with a path condition

void f(int x) {

char *y;
1if (x) 2y = “hello!”;

else 3y = fgets(…);
4if (x) 5printf(y);

6}

• x ≠ 0⟹ untainted ≤ α (segment 1-2)

• x = 0⟹ tainted ≤ α (segment 1-3)

• x ≠ 0⟹ α ≤ untainted (segment 4-5)

db4e9c736e9bcefb6fd3a67700

Static analysis in

practice
Fortify

Caveat: appearance in the above list is not an implicit endorsement, and these are only a sample of available offerings

FindBugs

clang

analyzer
&

KLEE

