Rainbow Tables

ENEE 457/CMSC 498E

How are Passwords Stored?

- Option 1: Store all passwords in a table in the clear.
 - Problem: If Server is compromised then all passwords are leaked.
- Option 2: Store only the hash values in a table in the clear.
 - If Server is compromised, hard to recover password values given hash values.

Background

- Cryptographic hash function H.
- Given H(x) it is hard to find x' such that H(x') = H(x).
- How hard is it?
 - Assume "brute force" is the best attack
 - Try all possible passwords x' and check whether H(x') = H(x).
- How many possible passwords are there?
 - Assume a dictionary of size N.
 - E.g. if passwords are 6 characters (case sensitive letters, numerals, special characters) then $N \approx 95^6$.

Simple Time-Memory Trade Offs

- Can run brute force attack each time to invert the hash:
 - -O(N) time, O(1) memory
- Can precompute the entire truth table, use a lookup each time to invert the hash:
 - -0(1) time (depending on data structure), O(N) memory.

A Cryptanalytic Time-Memory Trade Off

Construction of Table (pre-processing):

Choose m starting points:

$$SP_1 := X_{1,0}, \dots, SP_m := X_{m,0}$$

- Compute $X_{i,j} = f(X_{i,j-1}) = R(H(X_{i,j-1}))$
- Reduction function R is a mapping from the range of the hash to the dictionary D.
 - E.g. take first six characters of hash output.
- $EP_i = f^t(SP_i)$

$$SP_{1} = X_{10} - X_{11} - X_{12} - \cdots - X_{1t} = EP_{1}$$

$$SP_{2} = X_{20} - X_{21} - X_{22} - \cdots - X_{2t} = EP_{2}$$

$$\vdots$$

$$SP_{m} = X_{m0} - X_{m1} - X_{m2} - \cdots - X_{mt} = EP_{m}$$

• Save the pairs $\{EP_i, SP_i\}_{1 \le i \le m}$

A Cryptanalytic Time-Memory Trade Off

Looking up a hash inverse:

- Given $h^* = H(m)$:
 - Apply R to obtain $Y_1 = R(h^*) = f(m)$
 - Check if Y_1 is an endpoint in the table.
 - If yes $(Y_1 = EP_i)$, recompute from SP_i to find preimage.
 - Otherwise, compute $Y_2 = f(Y_1)$ and repeat.
 - Do this until reaching $Y_t = f^t(Y_1)$.

Success Probability?

• Heuristic argument—need m, t to each be approx. \sqrt{N} to have good success probability.

Problem:

- Not all intermediate values in chains will be unique.
- "Collisions" → "Merges" of chains
 - So after a collision, the chain is useless.

Theorem (Hellman '80)

The success probability P(S) is at least

$$P(S) \ge \left(\frac{1}{N}\right) \sum_{i=1}^{m} \sum_{j=0}^{t-1} \left[\frac{N-it}{N}\right]^{j+1}$$

Proof of Theorem

Let A be the set of distinct entries in the set of m chains of length t. Then P(S) = E[|A|]/N.

Let $I_{i,j}$ be the indicator variable set to 1 if position (i,j) is a "new" value (when filling in the table row-by-row starting from i=1) and set to 0 otherwise.

$$E[|A|] = \sum_{i=1}^{m} \sum_{j=0}^{t-1} E[I_{i,j}] = \sum_{i=1}^{m} \sum_{j=0}^{t-1} P(I_{i,j} = 1)$$

$$P(I_{i,j} = 1) \ge P(I_{i,0} = 1 \land I_{i,1} = 1 \land \dots \land I_{i,j} = 1)$$

$$= P(I_{i,0} = 1) \cdot P(I_{i,1} = 1 \mid I_{i,0} = 1) \cdots P(I_{i,j} = 1 \mid I_{i,0} = 1 \cdots I_{i,j-1} = 1)$$

$$= \frac{N - |A_i|}{N} \cdot \frac{N - |A_i| - 1}{N} \cdots \frac{N - |A_i| - j}{N}$$

$$\ge \left[\frac{N - it}{N}\right]^{j+1}$$

Where A_i is the set of distinct elements at the moment we reach the i-th row. Clearly, $|A_i| \leq it$.

Parameter Settings

- Set $m, t := N^{\frac{1}{3}}$
- $P(S) \ge 1/N^{1/3}$

Storing ℓ independent tables

• Increase success probability from P(S) to

$$1-\left(1-P(S)\right)^{\ell}.$$

Optimal Parameters

- Set $m, t, \ell \coloneqq N^{\frac{1}{3}}$
- Require storage of size $N^{2/3}$, each lookup requires $N^{2/3}$ computations.
- For our example before,
 - Brute force search $95^6 \approx 7 \times 10^{11}$.
 - Using Hellman's method $95^4 \approx 8 \times 10^7$
 - -10^{-6} second per hash
 - $-\approx 194$ hours (8 days) to invert one hash value vs. 80 seconds.

Rivest's Modification ('82)

- Distinguished endpoints
 - E.g. the first ten bits are zero
- When given a hash value to invert, can generate a chain of keys until we find a distinguished point and only then look it up in the memory.
- Greatly reduces the number of memory lookups
- Allow for loop detection
- Merges can be easily detected since two merging chains will have the same endpoint.

Rainbow Tables

- Introduced by Philippe Oechslin in '03.
 - "Making a Faster Cryptanalytic Time-Memory Trade-Off"
- Modifies Hellman's method:
 - Chains use a successive reduction function for each point in the chain—"rainbow".
 - Start with reduction function 1 and end with reduction function t-1.
 - For chains of length t, if a collision occurs, the chance of it being a merge is only $\frac{1}{t}$ (collision must occur in same column).
- **Collisions do not necessarily imply merges**

Additional Benefits of Rainbow Tables

- The number of table look-ups is reduced by a factor of t compared to Hellman's method.
- Merges of chains result in identical endpoints, so they are detectable and can be eliminated from table.
- No loops.
- Rainbow chains have constant length (as opposed to distinguished points).

Success Probability

Success probability of t classical tables of size $m \times t$ is approximately equal to that of a single rainbow table of size $mt \times t$.

Lookup Time

Lookup requires t^2 calculations in classical table

Can be done with $1+2+\cdots t=\frac{t(t-1)}{2}$ calculations in Rainbow table

Countermeasure Against Rainbow Tables

- Rainbow Table takes advantage of the fact that N is fairly small.
- Countermeasure: Store H(password||salt)
 - salt is public and can be stored along with the hash
- Attacker would need to precompute a table for every possible salt value.
- E.g. 128-bit salt would require 2^{128} tables.