Rainbow Tables

ENEE 457/CMSC 498E

How are Passwords Stored?

- Option 1: Store all passwords in a table in the clear.
- Problem: If Server is compromised then all passwords are leaked.
- Option 2: Store only the hash values in a table in the clear.
- If Server is compromised, hard to recover password values given hash values.

Background

- Cryptographic hash function H.
- Given $H(x)$ it is hard to find x^{\prime} such that $H\left(x^{\prime}\right)=H(x)$.
- How hard is it?
- Assume "brute force" is the best attack
- Try all possible passwords x^{\prime} and check whether $H\left(x^{\prime}\right)=H(x)$.
- How many possible passwords are there?
- Assume a dictionary of size N.
- E.g. if passwords are 6 characters (case sensitive letters, numerals, special characters) then $N \approx 95^{6}$.

Simple Time-Memory Trade Offs

- Can run brute force attack each time to invert the hash:
$-O(N)$ time, $O(1)$ memory
- Can precompute the entire truth table, use a lookup each time to invert the hash:
$-O(1)$ time (depending on data structure), $O(N)$ memory.

A Cryptanalytic Time-Memory Trade Off

Construction of Table (pre-processing):

- Choose m starting points:

$$
S P_{1}:=X_{1,0}, \ldots, S P_{m}:=X_{m, 0}
$$

- Compute $X_{i, j}=f\left(X_{i, j-1}\right)=R\left(H\left(X_{i, j-1}\right)\right)$
- Reduction function R is a mapping from the range of the hash to the dictionary D.
- E.g. take first six characters of hash output.
- $E P_{i}=f^{t}\left(S P_{i}\right)$

$$
\begin{aligned}
& S P_{1}=x_{10} \xrightarrow{f} x_{11} \stackrel{f}{-} x_{12} \xrightarrow{f} \cdots \stackrel{f}{\rightarrow} x_{1 t}=E P_{1} \\
& S P_{2}=x_{20} \xrightarrow{f} \mathrm{x}_{21} \stackrel{f}{\longrightarrow} \mathrm{x}_{22} \xrightarrow{f} \cdots \xrightarrow{f} \mathrm{x}_{2 \mathrm{t}}=E P_{2} \\
& S P_{m}=x_{m 0} \xrightarrow{f} x_{m 1} \xrightarrow{f}-x_{m 2} \xrightarrow{f} \cdots \xrightarrow{f} x_{m t}=E P_{m}
\end{aligned}
$$

- Save the pairs $\left\{E P_{i}, S P_{i}\right\}_{1 \leq i \leq m}$

A Cryptanalytic Time-Memory Trade Off

Looking up a hash inverse:

- Given $h^{*}=H(m)$:
- Apply R to obtain $Y_{1}=R\left(h^{*}\right)=f(m)$
- Check if Y_{1} is an endpoint in the table.
- If yes ($Y_{1}=E P_{i}$), recompute from $S P_{i}$ to find preimage.
- Otherwise, compute $Y_{2}=f\left(Y_{1}\right)$ and repeat.
- Do this until reaching $Y_{t}=f^{t}\left(Y_{1}\right)$.

Success Probability?

- Heuristic argument—need m, t to each be approx. \sqrt{N} to have good success probability.

Problem:

- Not all intermediate values in chains will be unique.
- "Collisions" \rightarrow "Merges" of chains
- So after a collision, the chain is useless.

Theorem (Hellman '80)

The success probability $P(S)$ is at least

$$
P(S) \geq\left(\frac{1}{N}\right) \sum_{i=1}^{m} \sum_{j=0}^{t-1}\left[\frac{N-i t}{N}\right]^{j+1}
$$

Proof of Theorem

Let A be the set of distinct entries in the set of m chains of length t. Then $P(S)=E[|A|] / N$.
Let $I_{i, j}$ be the indicator variable set to 1 if position (i, j) is a "new" value (when filling in the table row-by-row starting from $i=1$) and set to 0 otherwise.

$$
E[|A|]=\sum_{i=1}^{m} \sum_{j=0}^{t-1} E\left[I_{i, j}\right]=\sum_{i=1}^{m} \sum_{j=0}^{t-1} P\left(I_{i, j}=1\right)
$$

$$
\begin{gathered}
P\left(I_{i, j}=1\right) \geq P\left(I_{i, 0}=1 \wedge I_{i, 1}=1 \wedge \cdots \wedge I_{i, j}=1\right) \\
=P\left(I_{i, 0}=1\right) \cdot P\left(I_{i, 1}=1 \mid I_{i, 0}=1\right) \cdots P\left(I_{i, j}=1 \mid I_{i, 0}=1 \cdots I_{i, j-1}=1\right) \\
=\frac{N-\left|A_{i}\right|}{N} \cdot \frac{N-\left|A_{i}\right|-1}{N} \cdots \frac{N-\left|A_{i}\right|-j}{N} \\
\geq\left[\frac{N-i t}{N}\right]^{j+1}
\end{gathered}
$$

Where A_{i} is the set of distinct elements at the moment we reach the i-th row. Clearly, $\left|A_{i}\right| \leq i t$.

Parameter Settings

- Set $m, t:=N^{\frac{1}{3}}$
- $P(S) \geq 1 / N^{1 / 3}$

Storing ℓ independent tables

- Increase success probability from $P(S)$ to

$$
1-(1-P(S))^{\ell}
$$

Optimal Parameters

- Set $m, t, \ell:=N^{\frac{1}{3}}$
- Require storage of size $N^{2 / 3}$, each lookup requires $N^{2 / 3}$ computations.
- For our example before,
- Brute force search $95^{6} \approx 7 \times 10^{11}$.
- Using Hellman's method $95^{4} \approx 8 \times 10^{7}$
-10^{-6} second per hash
$-\approx 194$ hours (8 days) to invert one hash value vs. 80 seconds.

Rivest’s Modification ('82)

- Distinguished endpoints
- E.g. the first ten bits are zero
- When given a hash value to invert, can generate a chain of keys until we find a distinguished point and only then look it up in the memory.
- Greatly reduces the number of memory lookups
- Allow for loop detection
- Merges can be easily detected since two merging chains will have the same endpoint.

Rainbow Tables

- Introduced by Philippe Oechslin in '03.
- "Making a Faster Cryptanalytic Time-Memory TradeOff"
- Modifies Hellman's method:
- Chains use a successive reduction function for each point in the chain-"rainbow".
- Start with reduction function 1 and end with reduction function $t-1$.
- For chains of length t, if a collision occurs, the chance of it being a merge is only $\frac{1}{t}$ (collision must occur in same column).
- **Collisions do not necessarily imply merges**

Additional Benefits of Rainbow Tables

- The number of table look-ups is reduced by a factor of t compared to Hellman's method.
- Merges of chains result in identical endpoints, so they are detectable and can be eliminated from table.
- No loops.
- Rainbow chains have constant length (as opposed to distinguished points).

Success Probability

Success probability of t classical tables of size $m \times t$ is approximately equal to that of a single rainbow table of size $m t \times t$.

$$
\begin{aligned}
& m \left\lvert\,\left[\begin{array}{llll}
k_{1,1}^{1} \xrightarrow{f_{1}} & \xrightarrow{f_{1}} & \ldots & \xrightarrow{f_{1}} k_{1, t}^{1} \\
k_{m, 1}^{1} \xrightarrow{f_{1}} & \xrightarrow[t]{f_{1}} & \ldots & \xrightarrow{f_{1}} k_{m, t}^{1}
\end{array}\right]\right. \\
& m\left[\begin{array}{lllll}
\overrightarrow{k_{1,1}^{2} \xrightarrow{f_{2}}} & \xrightarrow{f_{2}} & \ldots & \xrightarrow{f_{2}} k_{1, t}^{2} \\
k_{m, 1}^{2} \xrightarrow{f_{2}} & \xrightarrow{f_{2}} & \ldots & \xrightarrow{f_{2}} k_{m, t}^{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& m \downarrow\left[\begin{array}{lllll}
k_{1,1}^{t} \xrightarrow{f_{t}} & \xrightarrow{f_{t}} & \cdots & \xrightarrow{f_{t}} k_{1, t}^{t} \\
k_{m, 1}^{t} \xrightarrow{f_{t}} & \xrightarrow{f_{t}} & \cdots & \xrightarrow{f_{t}} & k_{m, t}^{t}
\end{array}\right]
\end{aligned}
$$

Lookup Time

Lookup requires t^{2} calculations in classical table
Can be done with $1+2+\cdots t=\frac{t(t-1)}{2}$ calculations in Rainbow table

$$
\begin{aligned}
& m \|\left[\begin{array}{llll}
k_{1,1}^{1} \xrightarrow{f_{1}} & \xrightarrow{f_{1}} \ldots & \xrightarrow{f_{1}} k_{1, t}^{1} \\
k_{m, 1}^{1} \xrightarrow{f_{1}} & \xrightarrow{f_{1}} \ldots & \xrightarrow{f_{1}} k_{m, t}^{1}
\end{array}\right] \\
& m \downarrow\left[\begin{array}{lllll}
k_{1,1}^{2} \xrightarrow{f_{2}} & \xrightarrow{f_{2}} & \ldots & \xrightarrow{f_{2}} k_{1, t}^{2} \\
k_{m, 1}^{2} & \xrightarrow{f_{2}} & \xrightarrow{f_{2}} & \ldots & \xrightarrow{f_{2}} \\
k_{m, t}^{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& m \downarrow\left[\begin{array}{lllll}
k_{1,1}^{t} \xrightarrow{f_{4}} & \stackrel{f_{t}}{\rightarrow} & \ldots & \stackrel{f_{t}}{\rightarrow} k_{1, t}^{t} \\
k_{m, 1}^{t} \xrightarrow{f_{t}} & \stackrel{f_{t}}{\rightarrow} & \ldots & \stackrel{f_{t}}{\rightarrow} k_{m, t}^{t}
\end{array}\right]
\end{aligned}
$$

Countermeasure Against Rainbow Tables

- Rainbow Table takes advantage of the fact that N is fairly small.
- Countermeasure: Store H(password||salt)
- salt is public and can be stored along with the hash
- Attacker would need to precompute a table for every possible salt value.
- E.g. 128 -bit salt would require 2^{128} tables.

