Password Hashing and
Memory Hardness

ENEE 457/CMSC 498E

Recall Password Hashing

e Store only the hash values of the passwords in
a table in the clear.

— If Server is compromised, hard to recover
password values given hash values.

e To defeat “Rainbow Tables” we can use a salt
when hashing the password.

But how to defeat the
“Brute Force” Attack?

 Recall, only around 95° =~ 7 x 10! hash evaluations
required to recover a single password using Brute Force
Search.

e Solution:
Password Scrambler PS:

1. Given a password pass, computing PS(pass) should
be “fast enough” for the user.

2. Computing PS(pass) should be “as slow as possible”
without contradicting 1.

3. Giveny = PS(pass) there must be no significantly
faster way to test g password candidates than by
actually computing PS on each candidate.

What About Parallel Computation?

Can’t a b-core adversary always get a b-times speedup?

Memory is expensive

— Typical GPU or other cheap and massively-parallel hardware
with lots of cores can only have a limited amount of fast
(“cache”) memory for each single core

Make the password scrambler PS not only intentionally
slow on standard sequential computers, but also
intentionally memory-consuming.

Any adversary using b cores in parallel with less than
about b times the memory of a sequential
implementation must experience a strong slow-down.

“Memory-Hard Functions”

* |dea:
— Start with an underlying hash function h
— Build a bigger hash function H from h

* Assume to compute h(xq, ..., Xp) requires £
units of time and € units of memory.

Representing Hash Function Evaluation
using a Graph

Start node
corresponds to input

o o 0

Each node corresponds to
a value stored in memory.

v O O -w
Typically require in-degree

to be constant, so that

hash evaluation for each

node takes constant time.

(Parallel) Graph Pebbling

let G = (V,E)bea DAGandT,S € V be node sets. Then

a (legal) pebbling of G with starting configuration S and

target T is a sequence (P, ..., P;)of subsets of V such

that:

1. PSS

2. Pebbles are added only when their predecessors
already have a pebble at the end of the previous step

3. At some point every target node is pebbled (not
necessarily simultaneously).

We call a pebbling of G complete if S = @ and T is the set
of sink nodes of (.

Space Complexity

Let G be a DAG, P = (Py, ..., P¢) be an arbitrary pebbling
of ¢ and II be the set of all complete pebblings of (.
Then the (cumulative) cost of P and the cumulative

complexity (CC) of G are defined respectively to be:

s-cost(P) == max{P;:i € {0, ..., t}}
sc(G) = min{s-cost(P): P e l'[}

st-cost(P) =t - max{P;:i € {0, ..., t}}
stc(G) = min{st-cost(P): P € I1}

Problem with Standard Notions

To compute two instances, a smart adversary won’t do this!

—>

memory

Instead:
f

PR | —

memory

Problem with Standard Notions

Offset multiple computations by a little to keep cost low!

>

i1 il c

memory

Cumulative Pebbling Complexity

Let G be a DAG, P = (P, ..., P;) be an arbitrary
pebbling of G and Il be the set of all complete
pebblings of G. Then the (cumulative) cost of P
and the cumulative complexity (CC) of G are
defined respectively to be:

p-cost(P) == Yi_,|P;l
cc(G) = min{p-cost(P): P € H}

Cumulative Pebbling Complexity

Lemma: Let G = G + G,. Then cc(G) =
cc(Gq) + cc(G,).

Lemma: There exists a G such that stc(G™") =

O(StC(G)).

Maximal CC?

Lemma: Let G be a DAG of size n and depth d.
Then cc(G) < dn.

Maximal CC is at most n? for an n-node graph.

Our focus: What is the Maximal CC we can
achieve for graphs with constant in-degree?

Case Study: Bit-Reversal Graphs

Fig. 1. An (8,1)-BRG.

Case Study: Bit-Reversal Graphs

Algorithm 2 (g, \)-Bit-Reversal Hashing (BRHY)

Require: g {Garlic}, x {Value to Hash}, A {Depth}, H {Hash Function}
Ensure: x {Password Hash}
vp +— H(x)
fori=1,....29 —1do
Vi — H{'i‘..‘g_lj
end for
for k=1.....A do
o H{Uﬂ ” 'L'gy_l}
fori=1.....29 —1do
R: Ti H{'ri_j_ ” '”-r{:']]
9: end for
10: U
11: end for
12: return ros—

A

Case Study: Bit-Reversal Graphs

It was shown in [Lengauer Tarjan 82] that (in the
sequential setting) any pebbling using S pebbles
requires time T such that ST = 0(n?).

Such graphs were suggested as candidates for
password hashing. E.g. in the Catena framework
(finalist in Password Hashing Competition [PHC]).

We will describe an algorithm which can pebble the
bit-reversal graph of size n using cumulative cost of
at most 0 (n').

CC of Bit-Reversal Graphs?

Theorem: A Bit-Reversal graph G of size n has
cc(G) = 0(n*>).

Extends to any “sandwich” graph:

A chain of n nodes (humbered 1 through n) with
arbitrary additional edges connecting nodes
from the first half of the chain with nodes of the
second half of the chain such that no node has
in-degree greater than 2.

CC of Bit-Reversal Graphs?

Proof: Consider the following strategy:
1. If i mod +/n = 0 then place a pebble on node 1

2. For each pebble on a node v € |n] place a pebble on
nodev + 1

3. Remove any pebble on nodes {(g) +1,.., n} except
the one on the highest valued node.

4. Let m be the highest valued node with a pebble onit.
Remove any pebbles on nodes v € [n/2] except if
(i — v)mod +/n = 0 or if there is an edge (v, m + j)
forsome 0 <j <+nandm+j>n/2.

CC of Bit-Reversal Graphs?

Proof (cont’d).

Must show (1) the above strategy is a legal pebbling (2) at any time
there are O(1/n) pebbles on the graph.

For (1), must show that this step is legal: For each pebble on a node
v € [n] place a pebble on node v + 1. Legal for first n/2 nodes, but not
necessarily second n/2 nodes. Why?

Key: for second n/2 nodes only the highest pebble on node m remains
from previous round (due to Rule 3). Node m+1 has at most one
additional incoming edge from first n/2 nodes. This node must be
pebbled due to the fact that each node is touched every y/n iterations
and the second half of Rule 4.

For (2), at most one pebble on second n/2 nodes (due to Rule 3). Due to
first half of Rule 4, at most \/n pebbles remain. Due to second half of
Rule 4 and the fact that each of the second n/2 nodes has in-degree at
most 2, at most an additional 24/n pebbles remain.

Scrypt

Initially introduced by Percival ‘09.

Used in proofs-of-work schemes for
cryptocurrencies.

Inspired the design of one of the Password-
hashing Competition’s [PHC] winners, Argon2d.

Similar structure to “sandwich” graph, but is data-
dependent.

The edges in the graph depend on the outcome
of the hashed data.

Scrypt

Input X

Output S,

Xo=Xandfori=1,..,n—1:X; = h(X;_1)
S50 = h(Xn_l)) andfori=1,..,n:5; =
h(Si—1 @ Xs,_, moan)

Scrypt is Maximally Memory Hard

Theorem (Alwen et al.): The cumulative
complexity of Scrypt is Q(n?).

