
Password Hashing and
Memory Hardness

ENEE 457/CMSC 498E

Recall Password Hashing

• Store only the hash values of the passwords in
a table in the clear.

– If Server is compromised, hard to recover
password values given hash values.

• To defeat “Rainbow Tables” we can use a salt
when hashing the password.

But how to defeat the
“Brute Force” Attack?

• Recall, only around 956 ≈ 7 × 1011 hash evaluations
required to recover a single password using Brute Force
Search.

• Solution:

Password Scrambler 𝑃𝑆:

1. Given a password pass, computing 𝑃𝑆(𝑝𝑎𝑠𝑠) should
be “fast enough” for the user.

2. Computing 𝑃𝑆(𝑝𝑎𝑠𝑠) should be “as slow as possible”
without contradicting 1.

3. Given 𝑦 = 𝑃𝑆(𝑝𝑎𝑠𝑠) there must be no significantly
faster way to test 𝑞 password candidates than by
actually computing 𝑃𝑆 on each candidate.

What About Parallel Computation?

• Can’t a 𝑏-core adversary always get a 𝑏-times speedup?

• Memory is expensive
– Typical GPU or other cheap and massively-parallel hardware

with lots of cores can only have a limited amount of fast
(“cache”) memory for each single core

• Make the password scrambler PS not only intentionally
slow on standard sequential computers, but also
intentionally memory-consuming.

• Any adversary using 𝑏 cores in parallel with less than
about 𝑏 times the memory of a sequential
implementation must experience a strong slow-down.

“Memory-Hard Functions”

• Idea:

– Start with an underlying hash function ℎ

– Build a bigger hash function 𝐻 from ℎ

• Assume to compute ℎ(𝑥1, … , 𝑥ℓ) requires ℓ
units of time and ℓ units of memory.

Representing Hash Function Evaluation
using a Graph

𝑥

Start node
corresponds to input

𝑥 𝑦 𝑦 = ℎ(𝑥)

𝑥 𝑦

𝑧

𝑦 = ℎ(𝑥||𝑧)

Each node corresponds to
a value stored in memory.

Typically require in-degree
to be constant, so that
hash evaluation for each
node takes constant time.

(Parallel) Graph Pebbling

Let 𝐺 = (𝑉, 𝐸) be a DAG and 𝑇, 𝑆 ⊆ 𝑉 be node sets. Then
a (legal) pebbling of 𝐺 with starting configuration 𝑆 and
target 𝑇 is a sequence 𝑃0, … , 𝑃𝑡 of subsets of 𝑉 such
that:

1. 𝑃0 ⊆ 𝑆

2. Pebbles are added only when their predecessors
already have a pebble at the end of the previous step

3. At some point every target node is pebbled (not
necessarily simultaneously).

We call a pebbling of 𝐺 complete if 𝑆 = ∅ and 𝑇 is the set
of sink nodes of 𝐺.

Space Complexity

Let 𝐺 be a DAG, 𝑃 = (𝑃0, … , 𝑃𝑡) be an arbitrary pebbling
of 𝐺 and Π be the set of all complete pebblings of 𝐺.
Then the (cumulative) cost of 𝑃 and the cumulative
complexity (CC) of 𝐺 are defined respectively to be:

 𝑠-𝑐𝑜𝑠𝑡 𝑃 ≔ max 𝑃𝑖: 𝑖 ∈ 0,… , 𝑡

 𝑠𝑐 𝐺 ≔ min 𝑠-𝑐𝑜𝑠𝑡 𝑃 : 𝑃 ∈ Π

 𝑠𝑡−𝑐𝑜𝑠𝑡 𝑃 ≔ 𝑡 ⋅ max 𝑃𝑖: 𝑖 ∈ 0,… , 𝑡

 𝑠𝑡𝑐 𝐺 ≔ min 𝑠𝑡−𝑐𝑜𝑠𝑡 𝑃 : 𝑃 ∈ Π

Problem with Standard Notions
To compute two instances, a smart adversary won’t do this!

m
em

o
ry

Instead:

m
em

o
ry

Problem with Standard Notions
m

em
o

ry

Offset multiple computations by a little to keep cost low!

Cumulative Pebbling Complexity

Let 𝐺 be a DAG, 𝑃 = (𝑃0, … , 𝑃𝑡) be an arbitrary
pebbling of 𝐺 and Π be the set of all complete
pebblings of 𝐺. Then the (cumulative) cost of 𝑃
and the cumulative complexity (CC) of 𝐺 are
defined respectively to be:

𝑝-𝑐𝑜𝑠𝑡 𝑃 ≔ 𝑃𝑖
𝑡
𝑖=0

𝑐𝑐 𝐺 ≔ min 𝑝-𝑐𝑜𝑠𝑡 𝑃 : 𝑃 ∈ Π

Cumulative Pebbling Complexity

Lemma: Let 𝐺 = 𝐺1 + 𝐺2. Then 𝑐𝑐 𝐺 =
𝑐𝑐 𝐺1 + 𝑐𝑐 𝐺2 .

Lemma: There exists a 𝐺 such that 𝑠𝑡𝑐 𝐺×𝑛 =

𝑂 𝑠𝑡𝑐 𝐺 .

Maximal CC?

Lemma: Let 𝐺 be a DAG of size 𝑛 and depth 𝑑.
Then 𝑐𝑐 𝐺 ≤ 𝑑𝑛.

Maximal CC is at most 𝑛2 for an 𝑛-node graph.

Our focus: What is the Maximal CC we can
achieve for graphs with constant in-degree?

Case Study: Bit-Reversal Graphs

Case Study: Bit-Reversal Graphs

Case Study: Bit-Reversal Graphs

It was shown in [Lengauer Tarjan 82] that (in the
sequential setting) any pebbling using S pebbles
requires time T such that ST = 𝑂(𝑛2).

Such graphs were suggested as candidates for
password hashing. E.g. in the Catena framework
(finalist in Password Hashing Competition [PHC]).

We will describe an algorithm which can pebble the
bit-reversal graph of size n using cumulative cost of
at most 𝑂 𝑛1.5 .

CC of Bit-Reversal Graphs?

Theorem: A Bit-Reversal graph 𝐺 of size 𝑛 has
𝑐𝑐 𝐺 = 𝑂 𝑛1.5 .

Extends to any “sandwich” graph:

A chain of n nodes (numbered 1 through 𝑛) with
arbitrary additional edges connecting nodes
from the first half of the chain with nodes of the
second half of the chain such that no node has
in-degree greater than 2.

CC of Bit-Reversal Graphs?

Proof: Consider the following strategy:

1. If 𝑖 𝑚𝑜𝑑 𝑛 = 0 then place a pebble on node 1

2. For each pebble on a node 𝑣 ∈ [𝑛] place a pebble on
node 𝑣 + 1

3. Remove any pebble on nodes
𝑛

2
+ 1,… , 𝑛 except

the one on the highest valued node.

4. Let 𝑚 be the highest valued node with a pebble on it.
Remove any pebbles on nodes 𝑣 ∈ [𝑛/2] except if
𝑖 − 𝑣 𝑚𝑜𝑑 𝑛 = 0 or if there is an edge 𝑣,𝑚 + 𝑗

for some 0 < 𝑗 < 𝑛 and 𝑚+ 𝑗 > 𝑛/2.

CC of Bit-Reversal Graphs?
Proof (cont’d).
Must show (1) the above strategy is a legal pebbling (2) at any time
there are 𝑂 𝑛 pebbles on the graph.

For (1), must show that this step is legal: For each pebble on a node
𝑣 ∈ [𝑛] place a pebble on node 𝑣 + 1. Legal for first n/2 nodes, but not
necessarily second n/2 nodes. Why?
Key: for second n/2 nodes only the highest pebble on node m remains
from previous round (due to Rule 3). Node m+1 has at most one
additional incoming edge from first n/2 nodes. This node must be
pebbled due to the fact that each node is touched every 𝑛 iterations
and the second half of Rule 4.

For (2), at most one pebble on second n/2 nodes (due to Rule 3). Due to
first half of Rule 4, at most 𝑛 pebbles remain. Due to second half of
Rule 4 and the fact that each of the second n/2 nodes has in-degree at
most 2, at most an additional 2 𝑛 pebbles remain.

Scrypt

• Initially introduced by Percival ‘09.

• Used in proofs-of-work schemes for
cryptocurrencies.

• Inspired the design of one of the Password-
hashing Competition’s [PHC] winners, Argon2d.

• Similar structure to “sandwich” graph, but is data-
dependent.

• The edges in the graph depend on the outcome
of the hashed data.

Scrypt

• Input 𝑋

• Output 𝑆𝑛

• 𝑋0 = 𝑋 and for 𝑖 = 1,… , 𝑛 − 1: 𝑋𝑖 = ℎ 𝑋𝑖−1

• 𝑆0 = ℎ 𝑋𝑛−1) and for 𝑖 = 1, … , 𝑛: 𝑆𝑖 =

ℎ 𝑆𝑖−1⊕𝑋𝑆𝑖−1 𝑚𝑜𝑑 𝑛

Scrypt is Maximally Memory Hard

Theorem (Alwen et al.): The cumulative
complexity of Scrypt is Ω 𝑛2 .

