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Recall Password Hashing 

• Store only the hash values of the passwords in 
a table in the clear. 

– If Server is compromised, hard to recover 
password values given hash values. 

• To defeat “Rainbow Tables” we can use a salt 
when hashing the password. 



But how to defeat the  
“Brute Force” Attack? 

• Recall, only around 956 ≈ 7 × 1011 hash evaluations 
required to recover a single password using Brute Force 
Search. 

• Solution: 

Password Scrambler 𝑃𝑆: 

1. Given a password pass, computing 𝑃𝑆(𝑝𝑎𝑠𝑠) should 
be “fast enough” for the user. 

2. Computing 𝑃𝑆(𝑝𝑎𝑠𝑠) should be “as slow as possible” 
without contradicting 1. 

3. Given 𝑦 =  𝑃𝑆(𝑝𝑎𝑠𝑠) there must be no significantly 
faster way to test 𝑞 password candidates than by 
actually computing 𝑃𝑆 on each candidate. 



What About Parallel Computation? 

• Can’t a 𝑏-core adversary always get a 𝑏-times speedup? 

• Memory is expensive 
– Typical GPU or other cheap and massively-parallel hardware 

with lots of cores can only have a limited amount of fast 
(“cache”) memory for each single core  

• Make the password scrambler PS not only intentionally 
slow on standard sequential computers, but also 
intentionally memory-consuming.  

• Any adversary using 𝑏 cores in parallel with less than 
about 𝑏 times the memory of a sequential 
implementation must experience a strong slow-down. 



“Memory-Hard Functions” 

• Idea: 

– Start with an underlying hash function ℎ 

– Build a bigger hash function 𝐻 from ℎ 

 

• Assume to compute ℎ(𝑥1, … , 𝑥ℓ) requires ℓ 
units of time and ℓ units of memory. 

 

 



Representing Hash Function Evaluation 
using a Graph 

𝑥 

Start node 
corresponds to input 

𝑥 𝑦 𝑦 =  ℎ(𝑥) 

𝑥 𝑦 

𝑧 

𝑦 =  ℎ(𝑥||𝑧) 

Each node corresponds to 
a value stored in memory. 
 
Typically require in-degree 
to be constant, so that 
hash evaluation for each 
node takes constant time. 



(Parallel) Graph Pebbling 

Let 𝐺 = (𝑉, 𝐸) be a DAG and 𝑇, 𝑆 ⊆ 𝑉 be node sets. Then 
a (legal) pebbling of 𝐺 with starting configuration 𝑆 and 
target 𝑇 is a sequence 𝑃0, … , 𝑃𝑡 of subsets of 𝑉 such 
that: 

1. 𝑃0 ⊆ 𝑆 

2. Pebbles are added only when their predecessors 
already have a pebble at the end of the previous step 

3. At some point every target node is pebbled (not 
necessarily simultaneously). 

We call a pebbling of 𝐺 complete if 𝑆 = ∅ and 𝑇 is the set 
of sink nodes of 𝐺. 



Space Complexity 

Let 𝐺 be a DAG, 𝑃 = (𝑃0, … , 𝑃𝑡) be an arbitrary pebbling 
of 𝐺 and Π be the set of all complete pebblings of 𝐺. 
Then the (cumulative) cost of 𝑃 and the cumulative 
complexity (CC) of 𝐺 are defined respectively to be: 

 

 𝑠-𝑐𝑜𝑠𝑡 𝑃 ≔ max 𝑃𝑖: 𝑖 ∈ 0,… , 𝑡      

 𝑠𝑐 𝐺 ≔ min 𝑠-𝑐𝑜𝑠𝑡 𝑃 : 𝑃 ∈ Π  

 

 𝑠𝑡−𝑐𝑜𝑠𝑡 𝑃 ≔ 𝑡 ⋅ max 𝑃𝑖: 𝑖 ∈ 0,… , 𝑡   

 𝑠𝑡𝑐 𝐺 ≔ min 𝑠𝑡−𝑐𝑜𝑠𝑡 𝑃 : 𝑃 ∈ Π  

 

 



Problem with Standard Notions 
To compute two instances, a smart adversary won’t do this! 
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Instead: 
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Problem with Standard Notions 
m
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Offset multiple computations by a little to keep cost low! 
  



Cumulative Pebbling Complexity 

Let 𝐺 be a DAG, 𝑃 = (𝑃0, … , 𝑃𝑡) be an arbitrary 
pebbling of 𝐺 and Π be the set of all complete 
pebblings of 𝐺. Then the (cumulative) cost of 𝑃 
and the cumulative complexity (CC) of 𝐺 are 
defined respectively to be: 

𝑝-𝑐𝑜𝑠𝑡 𝑃 ≔  𝑃𝑖
𝑡
𝑖=0        

𝑐𝑐 𝐺 ≔ min 𝑝-𝑐𝑜𝑠𝑡 𝑃 : 𝑃 ∈ Π  



Cumulative Pebbling Complexity 

Lemma: Let 𝐺 = 𝐺1 + 𝐺2. Then 𝑐𝑐 𝐺 =
𝑐𝑐 𝐺1 + 𝑐𝑐 𝐺2 . 

 

Lemma: There exists a 𝐺 such that 𝑠𝑡𝑐 𝐺×𝑛 =

𝑂 𝑠𝑡𝑐 𝐺 . 



Maximal CC? 

Lemma: Let 𝐺 be a DAG of size 𝑛 and depth 𝑑. 
Then 𝑐𝑐 𝐺 ≤ 𝑑𝑛. 

 

Maximal CC is at most 𝑛2 for an 𝑛-node graph. 

 

Our focus: What is the Maximal CC we can 
achieve for graphs with constant in-degree? 



Case Study: Bit-Reversal Graphs 
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Case Study: Bit-Reversal Graphs 

It was shown in [Lengauer Tarjan 82] that (in the 
sequential setting) any pebbling using S pebbles 
requires time T such that ST = 𝑂(𝑛2 ).  
 
Such graphs were suggested as candidates for 
password hashing. E.g. in the Catena framework 
(finalist in Password Hashing Competition [PHC]). 
 
We will describe an algorithm which can pebble the 
bit-reversal graph of size n using cumulative cost of 
at most 𝑂 𝑛1.5 . 



CC of Bit-Reversal Graphs? 

Theorem: A Bit-Reversal graph 𝐺 of size 𝑛 has 
𝑐𝑐 𝐺 = 𝑂 𝑛1.5 . 

 

Extends to any “sandwich” graph: 

A chain of n nodes (numbered 1 through 𝑛) with 
arbitrary additional edges connecting nodes 
from the first half of the chain with nodes of the 
second half of the chain such that no node has 
in-degree greater than 2. 



CC of Bit-Reversal Graphs? 

Proof: Consider the following strategy: 

1. If 𝑖 𝑚𝑜𝑑 𝑛 = 0 then place a pebble on node 1 

2. For each pebble on a node 𝑣 ∈ [𝑛] place a pebble on 
node 𝑣 + 1 

3. Remove any pebble on nodes 
𝑛

2
+ 1,… , 𝑛  except 

the one on the highest valued node. 

4. Let 𝑚 be the highest valued node with a pebble on it. 
Remove any pebbles on nodes 𝑣 ∈ [𝑛/2] except if 
𝑖 − 𝑣 𝑚𝑜𝑑 𝑛 = 0 or if there is an edge 𝑣,𝑚 + 𝑗  

for some 0 < 𝑗 < 𝑛 and 𝑚+ 𝑗 > 𝑛/2. 



CC of Bit-Reversal Graphs? 
Proof (cont’d). 
Must show (1) the above strategy is a legal pebbling (2) at any time 
there are 𝑂 𝑛  pebbles on the graph. 
 
For (1), must show that this step is legal: For each pebble on a node 
𝑣 ∈ [𝑛] place a pebble on node 𝑣 + 1. Legal for first n/2 nodes, but not 
necessarily second n/2 nodes. Why? 
Key: for second n/2 nodes only the highest pebble on node m remains 
from previous round (due to Rule 3). Node m+1 has at most one 
additional incoming edge from first n/2 nodes. This node must be 
pebbled due to the fact that each node is touched every 𝑛 iterations 
and the second half of Rule 4. 
 
For (2), at most one pebble on second n/2 nodes (due to Rule 3). Due to 
first half of Rule 4, at most 𝑛 pebbles remain. Due to second half of 
Rule 4 and the fact that each of the second n/2 nodes has in-degree at 
most 2, at most an additional 2 𝑛 pebbles remain.   



Scrypt 

• Initially introduced by Percival ‘09. 

• Used in proofs-of-work schemes for 
cryptocurrencies. 

• Inspired the design of one of the Password-
hashing Competition’s [PHC] winners, Argon2d. 

• Similar structure to “sandwich” graph, but is data-
dependent.  

• The edges in the graph depend on the outcome 
of the hashed data. 



Scrypt 

• Input 𝑋 

• Output 𝑆𝑛 

• 𝑋0 = 𝑋 and for 𝑖 = 1,… , 𝑛 − 1: 𝑋𝑖 = ℎ 𝑋𝑖−1  

• 𝑆0 = ℎ 𝑋𝑛−1)  and for 𝑖 = 1, … , 𝑛: 𝑆𝑖 =

ℎ 𝑆𝑖−1⊕𝑋𝑆𝑖−1 𝑚𝑜𝑑 𝑛  



Scrypt is Maximally Memory Hard 

Theorem (Alwen et al.): The cumulative 
complexity of Scrypt is Ω 𝑛2 . 


