
Message Authentication Codes 
Definition:  A message authentication code (MAC) consists of 
three probabilistic polynomial-time algorithms 
(𝐺𝑒𝑛, 𝑀𝑎𝑐, 𝑉𝑟𝑓𝑦) such that: 
1. The key-generation algorithm 𝐺𝑒𝑛 takes as input the 

security parameter 1𝑛 and outputs a key 𝑘 with 𝑘 ≥ 𝑛. 
2. The tag-generation algorithm 𝑀𝑎𝑐 takes as input a key 𝑘 

and a message 𝑚 ∈ 0,1 ∗, and outputs a tag 𝑡.  
𝑡 ← 𝑀𝑎𝑐𝑘(𝑚). 

3. The deterministic verification algorithm 𝑉𝑟𝑓𝑦 takes as 
input a key 𝑘, a message 𝑚, and a tag 𝑡.  It outputs a bit 𝑏 
with 𝑏 = 1 meaning valid and 𝑏 = 0 meaning invalid.  
𝑏 ≔ 𝑉𝑟𝑓𝑦𝑘(𝑚, 𝑡). 

It is required that for every 𝑛, every key 𝑘 output by 𝐺𝑒𝑛(1𝑛), 
and every 𝑚 ∈ 0,1 ∗, it holds that 𝑉𝑟𝑓𝑦𝑘 𝑚, 𝑀𝑎𝑐𝑘 𝑚 = 1. 



Existential Unforgeability under CMA 
Attacker 

 
 
 
 
 
 
 
 
 

Challenger 
𝑘 ← 𝐺𝑒𝑛() 

 
𝑡 ← 𝑀𝑎𝑐(𝑘,𝑚) 

 
 
 
 
 
 

𝑚 

𝑡 
… 

(𝑚∗, 𝑡∗) 

Set of 
queries 𝑄 

forgery 

Attacker “wins” if : 
1. 𝑚∗ ∉ 𝑄 
2. 𝑉𝑟𝑓𝑦 𝑘,𝑚∗, 𝑡∗ = 1 
 
Security Requirement: Any efficient attacker wins with probability at most 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 



CBC-MAC 
Let 𝐹 be a pseudorandom function, and fix a length 
function ℓ.  The basic CBC-MAC construction is as follows: 

• 𝑀𝑎𝑐: on input a key 𝑘 ∈ 0,1 𝑛 and a message 𝑚 of 
length ℓ 𝑛 ⋅ 𝑛, do the following: 
1. Parse 𝑚 as 𝑚 = 𝑚1, … , 𝑚ℓ where each 𝑚𝑖 is of length 𝑛. 

2. Set 𝑡0 ≔ 0𝑛.  Then, for 𝑖 = 1 𝑡𝑜 ℓ: 

  Set 𝑡𝑖  ≔ 𝐹𝑘(𝑡𝑖−1 ⊕ 𝑚𝑖). 

Output 𝑡ℓ as the tag. 

• 𝑉𝑟𝑓𝑦: on input a key 𝑘 ∈ 0,1 𝑛, a message 𝑚, and a 
tag 𝑡, do:  If 𝑚 is not of length ℓ 𝑛 ⋅ 𝑛 then output 0.  
Otherwise, output 1 if and only if 𝑡 = 𝑀𝑎𝑐𝑘(𝑚). 



CBC-MAC 



Authenticated Encryption 

 

• Definition: A private-key encryption scheme is 
an authenticated encryption scheme if it is 
CCA-secure and unforgeable.  



CCA Security 
Attacker 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Challenger 
𝑘 ← 𝐺𝑒𝑛() 

 
  
 
 
 

𝑏 ← {0,1} 
𝑐∗ ← 𝐸𝑛𝑐(𝑘, 𝑚) 
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Attacker “wins” if 𝑏′ = 𝑏. 

CCA Security: Any efficient attacker wins with probability at most 
1

2
+ 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 



Generic Constructions 



Encrypt-and-authenticate 

Encryption and message authentication are 
computed independently in parallel. 

𝑐 ← 𝐸𝑛𝑐𝑘𝐸
𝑚       𝑡 ← 𝑀𝑎𝑐𝑘𝑀

𝑚  

𝑐, 𝑡  

 

Is this secure?  NO! 



Authenticate-then-encrypt 

Here a MAC tag 𝑡 is first computed, and then the 
message and tag are encrypted together. 

𝑡 ← 𝑀𝑎𝑐𝑘𝑀
𝑚       𝑐 ← 𝐸𝑛𝑐𝑘𝐸

(𝑚| 𝑡  

𝑐 is sent 

 

Is this secure?  NO!  Encryption scheme may not 
be CCA-secure.   



Encrypt-then-authenticate 

The message 𝑚 is first encrypted and then a 
MAC tag is computed over the result 

𝑐 ← 𝐸𝑛𝑐𝑘𝐸
𝑚      𝑡 ← 𝑀𝑎𝑐𝑘𝑀

𝑐  

𝑐, 𝑡  

 

Is this secure?  YES!  As long as the MAC is 
strongly secure. 



Examples 
Consider  multiplication modulo 23. 

 23 is a “safe prime” since 23 = 2*11 +1, where 11 is a prime. 

 

 

 

20 𝑚𝑜𝑑 23 1 

21 𝑚𝑜𝑑 23 2 

22 𝑚𝑜𝑑 23 4 

23 𝑚𝑜𝑑 23 8 

24 𝑚𝑜𝑑 23 16 

25 𝑚𝑜𝑑 23 32 → 9 

26 𝑚𝑜𝑑 23 18 

27 𝑚𝑜𝑑 23 36 → 13 

28 𝑚𝑜𝑑 23 26 → 3 

29 𝑚𝑜𝑑 23 6 

210 𝑚𝑜𝑑 23 12 

211 𝑚𝑜𝑑 23 24 → 1 

Consider the following 
cyclic group generated by 2: 

Actually, all of 2, 4, 8, 16, 9, 
18, 13, 3, 6, 12 are 
generators and each of 
them raised to the 11 will 
be equal to 1 modulo 23. 



Key Agreement 

The key-exchange experiment 𝐾𝐸𝑒𝑎𝑣
𝐴,Π

𝑛 : 

1. Two parties holding 1𝑛 execute protocol Π.  This results in a transcript 
𝑡𝑟𝑎𝑛𝑠 containing all the messages sent by the parties, and a key 𝑘 
output by each of the parties. 

2. A uniform bit 𝑏 ∈ {0,1} is chosen.  If 𝑏 = 0 set 𝑘 ≔ 𝑘, and if 𝑏 = 1 then 
choose 𝑘 ∈ 0,1 𝑛 uniformly at random. 

3. 𝐴 is given 𝑡𝑟𝑎𝑛𝑠 and 𝑘 , and outputs a bit 𝑏′. 
4. The output of the experiment is defined to be 1 if 𝑏′ = 𝑏 and 0 

otherwise. 
 
Definition: A key-exchange protocol Π is secure in the presence of an 
eavesdropper if for all ppt adversaries 𝐴 there is a negligible function 𝑛𝑒𝑔 
such that 

Pr 𝐾𝐸𝑒𝑎𝑣
𝐴,Π

𝑛 = 1 ≤
1

2
+ 𝑛𝑒𝑔 𝑛 . 



Diffie-Hellman Key Exchange 



Example for the group we saw above 
with generator 𝑔 = 2: 

Alice: 
 

𝑥 ← 0,… , 10  
Say 𝑥 = 8 
 
28 𝑚𝑜𝑑 23 = 3 
 
 
 
 
Output: 98 𝑚𝑜𝑑 23 

= 316 𝑚𝑜𝑑 23 
= 311 ⋅ 35 𝑚𝑜𝑑 23 
= 1 ⋅ 35 𝑚𝑜𝑑 23 
= 27 ⋅ 9 𝑚𝑜𝑑 23 
= 4 ⋅ 9 𝑚𝑜𝑑 23 

= 36 𝑚𝑜𝑑 23 = 𝟏𝟑 

Bob: 
 

𝑦 ← 0,… , 10  
Say 𝑦 = 5 
 
 
 
25 𝑚𝑜𝑑 23 = 9 
 
 
Output: 35 𝑚𝑜𝑑 23 

= 27 ⋅ 9 𝑚𝑜𝑑 23 
= 4 ⋅ 9 𝑚𝑜𝑑 23 

= 36 𝑚𝑜𝑑 23 = 𝟏𝟑 
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