
Message Authentication Codes
Definition: A message authentication code (MAC) consists of
three probabilistic polynomial-time algorithms
(𝐺𝑒𝑛, 𝑀𝑎𝑐, 𝑉𝑟𝑓𝑦) such that:
1. The key-generation algorithm 𝐺𝑒𝑛 takes as input the

security parameter 1𝑛 and outputs a key 𝑘 with 𝑘 ≥ 𝑛.
2. The tag-generation algorithm 𝑀𝑎𝑐 takes as input a key 𝑘

and a message 𝑚 ∈ 0,1 ∗, and outputs a tag 𝑡.
𝑡 ← 𝑀𝑎𝑐𝑘(𝑚).

3. The deterministic verification algorithm 𝑉𝑟𝑓𝑦 takes as
input a key 𝑘, a message 𝑚, and a tag 𝑡. It outputs a bit 𝑏
with 𝑏 = 1 meaning valid and 𝑏 = 0 meaning invalid.
𝑏 ≔ 𝑉𝑟𝑓𝑦𝑘(𝑚, 𝑡).

It is required that for every 𝑛, every key 𝑘 output by 𝐺𝑒𝑛(1𝑛),
and every 𝑚 ∈ 0,1 ∗, it holds that 𝑉𝑟𝑓𝑦𝑘 𝑚, 𝑀𝑎𝑐𝑘 𝑚 = 1.

Existential Unforgeability under CMA
Attacker

Challenger
𝑘 ← 𝐺𝑒𝑛()

𝑡 ← 𝑀𝑎𝑐(𝑘,𝑚)

𝑚

𝑡
…

(𝑚∗, 𝑡∗)

Set of
queries 𝑄

forgery

Attacker “wins” if :
1. 𝑚∗ ∉ 𝑄
2. 𝑉𝑟𝑓𝑦 𝑘,𝑚∗, 𝑡∗ = 1

Security Requirement: Any efficient attacker wins with probability at most 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒

CBC-MAC
Let 𝐹 be a pseudorandom function, and fix a length
function ℓ. The basic CBC-MAC construction is as follows:

• 𝑀𝑎𝑐: on input a key 𝑘 ∈ 0,1 𝑛 and a message 𝑚 of
length ℓ 𝑛 ⋅ 𝑛, do the following:
1. Parse 𝑚 as 𝑚 = 𝑚1, … , 𝑚ℓ where each 𝑚𝑖 is of length 𝑛.

2. Set 𝑡0 ≔ 0𝑛. Then, for 𝑖 = 1 𝑡𝑜 ℓ:

 Set 𝑡𝑖 ≔ 𝐹𝑘(𝑡𝑖−1 ⊕ 𝑚𝑖).

Output 𝑡ℓ as the tag.

• 𝑉𝑟𝑓𝑦: on input a key 𝑘 ∈ 0,1 𝑛, a message 𝑚, and a
tag 𝑡, do: If 𝑚 is not of length ℓ 𝑛 ⋅ 𝑛 then output 0.
Otherwise, output 1 if and only if 𝑡 = 𝑀𝑎𝑐𝑘(𝑚).

CBC-MAC

Authenticated Encryption

• Definition: A private-key encryption scheme is
an authenticated encryption scheme if it is
CCA-secure and unforgeable.

CCA Security
Attacker

Challenger
𝑘 ← 𝐺𝑒𝑛()

𝑏 ← {0,1}
𝑐∗ ← 𝐸𝑛𝑐(𝑘, 𝑚)

…

𝑚0, 𝑚1

𝑐∗

…

queries to
Enc/Dec

queries to
Enc/Dec
(cannot
query 𝑐∗)

challenge

𝑏′

Attacker “wins” if 𝑏′ = 𝑏.

CCA Security: Any efficient attacker wins with probability at most
1

2
+ 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒

Generic Constructions

Encrypt-and-authenticate

Encryption and message authentication are
computed independently in parallel.

𝑐 ← 𝐸𝑛𝑐𝑘𝐸
𝑚 𝑡 ← 𝑀𝑎𝑐𝑘𝑀

𝑚

𝑐, 𝑡

Is this secure? NO!

Authenticate-then-encrypt

Here a MAC tag 𝑡 is first computed, and then the
message and tag are encrypted together.

𝑡 ← 𝑀𝑎𝑐𝑘𝑀
𝑚 𝑐 ← 𝐸𝑛𝑐𝑘𝐸

(𝑚| 𝑡

𝑐 is sent

Is this secure? NO! Encryption scheme may not
be CCA-secure.

Encrypt-then-authenticate

The message 𝑚 is first encrypted and then a
MAC tag is computed over the result

𝑐 ← 𝐸𝑛𝑐𝑘𝐸
𝑚 𝑡 ← 𝑀𝑎𝑐𝑘𝑀

𝑐

𝑐, 𝑡

Is this secure? YES! As long as the MAC is
strongly secure.

Examples
Consider multiplication modulo 23.

 23 is a “safe prime” since 23 = 2*11 +1, where 11 is a prime.

20 𝑚𝑜𝑑 23 1

21 𝑚𝑜𝑑 23 2

22 𝑚𝑜𝑑 23 4

23 𝑚𝑜𝑑 23 8

24 𝑚𝑜𝑑 23 16

25 𝑚𝑜𝑑 23 32 → 9

26 𝑚𝑜𝑑 23 18

27 𝑚𝑜𝑑 23 36 → 13

28 𝑚𝑜𝑑 23 26 → 3

29 𝑚𝑜𝑑 23 6

210 𝑚𝑜𝑑 23 12

211 𝑚𝑜𝑑 23 24 → 1

Consider the following
cyclic group generated by 2:

Actually, all of 2, 4, 8, 16, 9,
18, 13, 3, 6, 12 are
generators and each of
them raised to the 11 will
be equal to 1 modulo 23.

Key Agreement

The key-exchange experiment 𝐾𝐸𝑒𝑎𝑣
𝐴,Π

𝑛 :

1. Two parties holding 1𝑛 execute protocol Π. This results in a transcript
𝑡𝑟𝑎𝑛𝑠 containing all the messages sent by the parties, and a key 𝑘
output by each of the parties.

2. A uniform bit 𝑏 ∈ {0,1} is chosen. If 𝑏 = 0 set 𝑘 ≔ 𝑘, and if 𝑏 = 1 then
choose 𝑘 ∈ 0,1 𝑛 uniformly at random.

3. 𝐴 is given 𝑡𝑟𝑎𝑛𝑠 and 𝑘 , and outputs a bit 𝑏′.
4. The output of the experiment is defined to be 1 if 𝑏′ = 𝑏 and 0

otherwise.

Definition: A key-exchange protocol Π is secure in the presence of an
eavesdropper if for all ppt adversaries 𝐴 there is a negligible function 𝑛𝑒𝑔
such that

Pr 𝐾𝐸𝑒𝑎𝑣
𝐴,Π

𝑛 = 1 ≤
1

2
+ 𝑛𝑒𝑔 𝑛 .

Diffie-Hellman Key Exchange

Example for the group we saw above
with generator 𝑔 = 2:

Alice:

𝑥 ← 0,… , 10
Say 𝑥 = 8

28 𝑚𝑜𝑑 23 = 3

Output: 98 𝑚𝑜𝑑 23

= 316 𝑚𝑜𝑑 23
= 311 ⋅ 35 𝑚𝑜𝑑 23
= 1 ⋅ 35 𝑚𝑜𝑑 23
= 27 ⋅ 9 𝑚𝑜𝑑 23
= 4 ⋅ 9 𝑚𝑜𝑑 23

= 36 𝑚𝑜𝑑 23 = 𝟏𝟑

Bob:

𝑦 ← 0,… , 10
Say 𝑦 = 5

25 𝑚𝑜𝑑 23 = 9

Output: 35 𝑚𝑜𝑑 23

= 27 ⋅ 9 𝑚𝑜𝑑 23
= 4 ⋅ 9 𝑚𝑜𝑑 23

= 36 𝑚𝑜𝑑 23 = 𝟏𝟑

3

9

