Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms (Gen, Mac, Vrfy) such that:

- 1. The key-generation algorithm *Gen* takes as input the security parameter 1^n and outputs a key k with $|k| \ge n$.
- 2. The tag-generation algorithm Mac takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a tag t. $t \leftarrow Mac_k(m)$.
- 3. The deterministic verification algorithm Vrfy takes as input a key k, a message m, and a tag t. It outputs a bit bwith b = 1 meaning valid and b = 0 meaning invalid. $b \coloneqq Vrfy_k(m, t)$.

It is required that for every n, every key k output by $Gen(1^n)$, and every $m \in \{0,1\}^*$, it holds that $Vrfy_k(m, Mac_k(m)) = 1$.

Existential Unforgeability under CMA

Attacker "wins" if :

- 1. $m^* \notin Q$
- 2. $Vrfy(k, m^*, t^*) = 1$

Security Requirement: Any efficient attacker wins with probability at most *negligible*

CBC-MAC

Let F be a pseudorandom function, and fix a length function ℓ . The basic CBC-MAC construction is as follows:

- *Mac*: on input a key $k \in \{0,1\}^n$ and a message m of length $\ell(n) \cdot n$, do the following:
 - 1. Parse *m* as $m = m_1, ..., m_\ell$ where each m_i is of length *n*.

2. Set
$$t_0 \coloneqq 0^n$$
. Then, for $i = 1$ to ℓ :

Set $t_i \coloneqq F_k(t_{i-1} \oplus m_i)$.

Output t_{ℓ} as the tag.

Vrfy: on input a key k ∈ {0,1}ⁿ, a message m, and a tag t, do: If m is not of length ℓ(n) · n then output 0. Otherwise, output 1 if and only if t = Mac_k(m).

CBC-MAC

FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).

Authenticated Encryption

 Definition: A private-key encryption scheme is an authenticated encryption scheme if it is CCA-secure and unforgeable.

CCA Security

Attacker "wins" if b' = b.

CCA Security: Any efficient attacker wins with probability at most $\frac{1}{2}$ + *negligible*

Generic Constructions

Encrypt-and-authenticate

Encryption and message authentication are computed independently in parallel.

$$\begin{array}{ll} c \leftarrow Enc_{k_E}(m) & t \leftarrow Mac_{k_M}(m) \\ & \langle c, t \rangle \end{array}$$

Is this secure? NO!

Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the message and tag are encrypted together.

$$t \leftarrow Mac_{k_M}(m)$$
 $c \leftarrow Enc_{k_E}(m||t)$

c is sent

Is this secure? NO! Encryption scheme may not be CCA-secure.

Encrypt-then-authenticate

The message m is first encrypted and then a MAC tag is computed over the result

$$c \leftarrow Enc_{k_E}(m) \quad t \leftarrow Mac_{k_M}(c)$$
$$\langle c, t \rangle$$

Is this secure? YES! As long as the MAC is strongly secure.

Examples

Consider multiplication modulo 23.

23 is a "safe prime" since 23 = 2*11 + 1, where 11 is a prime.

Consider the following cyclic group generated by 2:

Actually, all of 2, 4, 8, 16, 9, 18, 13, 3, 6, 12 are generators and each of them raised to the 11 will be equal to 1 modulo 23.

2 ⁰ mod 23	1	
2 ¹ mod 23	2	
2 ² mod 23	4	
2 ³ mod 23	8	
2 ⁴ mod 23	16	
2 ⁵ mod 23	$32 \rightarrow 9$	
2 ⁶ mod 23	18	
2 ⁷ mod 23	$36 \rightarrow 13$	
2 ⁸ mod 23	$26 \rightarrow 3$	
2 ⁹ mod 23	6	
2 ¹⁰ mod 23	12	
2 ¹¹ mod 23	$24 \rightarrow 1$	

Key Agreement

The key-exchange experiment $KE^{eav}_{A,\Pi}(n)$:

- 1. Two parties holding 1^n execute protocol Π . This results in a transcript *trans* containing all the messages sent by the parties, and a key k output by each of the parties.
- 2. A uniform bit $b \in \{0,1\}$ is chosen. If b = 0 set $\hat{k} \coloneqq k$, and if b = 1 then choose $\hat{k} \in \{0,1\}^n$ uniformly at random.
- 3. A is given *trans* and \hat{k} , and outputs a bit b'.
- 4. The output of the experiment is defined to be 1 if b' = b and 0 otherwise.

Definition: A key-exchange protocol Π is secure in the presence of an eavesdropper if for all ppt adversaries A there is a negligible function neg such that

$$\Pr\left[KE^{eav}_{A,\Pi}(n)=1\right] \leq \frac{1}{2} + neg(n).$$

Diffie-Hellman Key Exchange

FIGURE 10.2: The Diffie-Hellman key-exchange protocol.

Example for the group we saw above with generator g = 2:

Alice:		Bob:
$x \leftarrow \{0, \dots, 10\}$ Say $x = 8$		$y \leftarrow \{0, \dots, 10\}$ Say $y = 5$
$2^8 \mod 23 = 3$	3	
	€	$2^5 \mod 23 = 9$
Output: $9^8 \mod 23$ = $3^{16} \mod 23$ = $3^{11} \cdot 3^5 \mod 23$ = $1 \cdot 3^5 \mod 23$ = $27 \cdot 9 \mod 23$ = $4 \cdot 9 \mod 23$ = $36 \mod 23 = 13$		Output: $3^5 \mod 23$ = $27 \cdot 9 \mod 23$ = $4 \cdot 9 \mod 23$ = $36 \mod 23 = 13$