Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms (Gen, Mac, Vrfy) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1^{n} and outputs a key k with $|k| \geq n$.
2. The tag-generation algorithm Mac takes as input a key k and a message $m \in\{0,1\}^{*}$, and outputs a tag t. $t \leftarrow M a c_{k}(m)$.
3. The deterministic verification algorithm Vrfy takes as input a key k, a message m, and a tag t. It outputs a bit b with $b=1$ meaning valid and $b=0$ meaning invalid. $b:=\operatorname{Vrf} y_{k}(m, t)$.
It is required that for every n, every key k output by $\operatorname{Gen}\left(1^{n}\right)$, and every $m \in\{0,1\}^{*}$, it holds that $\operatorname{Vrf} y_{k}\left(m, \operatorname{Mac}_{k}(m)\right)=1$.

Existential Unforgeability under CMA

Attacker "wins" if :

1. $m^{*} \notin Q$
2. $\operatorname{Vrfy}\left(k, m^{*}, t^{*}\right)=1$

Security Requirement: Any efficient attacker wins with probability at most negligible

CBC-MAC

Let F be a pseudorandom function, and fix a length function ℓ. The basic CBC-MAC construction is as follows:

- Mac: on input a key $k \in\{0,1\}^{n}$ and a message m of length $\ell(n) \cdot n$, do the following:

1. Parse m as $m=m_{1}, \ldots, m_{\ell}$ where each m_{i} is of length n.
2. Set $t_{0}:=0^{n}$. Then, for $i=1$ to ℓ :

$$
\text { Set } t_{i}:=F_{k}\left(t_{i-1} \bigoplus m_{i}\right)
$$

Output t_{ℓ} as the tag.

- Vrfy: on input a key $k \in\{0,1\}^{n}$, a message m, and a $\operatorname{tag} t$, do: If m is not of length $\ell(n) \cdot n$ then output 0 . Otherwise, output 1 if and only if $t=\operatorname{Mac}_{k}(m)$.

CBC-MAC

FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).

Authenticated Encryption

- Definition: A private-key encryption scheme is an authenticated encryption scheme if it is CCA-secure and unforgeable.

CCA Security

Attacker "wins" if $b^{\prime}=b$.
CCA Security: Any efficient attacker wins with probability at most $\frac{1}{2}+$ negligible

Generic Constructions

Encrypt-and-authenticate

Encryption and message authentication are computed independently in parallel.

$$
c \leftarrow E n c_{k_{E}}(m) \quad t \leftarrow M a c_{k_{M}}(m)
$$

Is this secure? NO!

Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the message and tag are encrypted together.

$$
t \leftarrow M a c_{k_{M}}(m) \quad c \leftarrow E n c_{k_{E}}(m \| t)
$$

Is this secure? NO! Encryption scheme may not be CCA-secure.

Encrypt-then-authenticate

The message m is first encrypted and then a
MAC tag is computed over the result

$$
c \leftarrow E n c_{k_{E}}(m) \quad t \leftarrow M a c_{k_{M}}(c)
$$

Is this secure? YES! As long as the MAC is strongly secure.

Examples

Consider multiplication modulo 23.
23 is a "safe prime" since $23=2^{*} 11+1$, where 11 is a prime.

Consider the following cyclic group generated by 2 :

Actually, all of $2,4,8,16,9$, $18,13,3,6,12$ are generators and each of them raised to the 11 will be equal to 1 modulo 23.

$2^{0} \bmod 23$	1
$2^{1} \bmod 23$	2
$2^{2} \bmod 23$	4
$2^{3} \bmod 23$	8
$2^{4} \bmod 23$	16
$2^{5} \bmod 23$	$32 \rightarrow 9$
$2^{6} \bmod 23$	18
$2^{7} \bmod 23$	$36 \rightarrow 13$
$2^{8} \bmod 23$	$26 \rightarrow 3$
$2^{9} \bmod 23$	6
$2^{10} \bmod 23$	12
$2^{11} \bmod 23$	$24 \rightarrow 1$

Key Agreement

The key-exchange experiment $K E_{A, \Pi}^{e a v}(n)$:

1. Two parties holding 1^{n} execute protocol Π. This results in a transcript trans containing all the messages sent by the parties, and a key k output by each of the parties.
2. A uniform bit $b \in\{0,1\}$ is chosen. If $b=0$ set $\hat{k}:=k$, and if $b=1$ then choose $\hat{k} \in\{0,1\}^{n}$ uniformly at random.
3. A is given trans and \hat{k}, and outputs a bit b^{\prime}.
4. The output of the experiment is defined to be 1 if $b^{\prime}=b$ and 0 otherwise.

Definition: A key-exchange protocol Π is secure in the presence of an eavesdropper if for all ppt adversaries A there is a negligible function neg such that

$$
\operatorname{Pr}\left[K E_{A, \Pi}^{e a v}(n)=1\right] \leq \frac{1}{2}+\operatorname{neg}(n) .
$$

Diffie-Hellman Key Exchange

FIGURE 10.2: The Diffie-Hellman key-exchange protocol.

Example for the group we saw above with generator $g=2$:

Alice:
$x \leftarrow\{0, \ldots, 10\}$
Say $x=8$
$2^{8} \bmod 23=3$

Output: $9^{8} \bmod 23$
$=3^{16} \bmod 23$
$=3^{11} \cdot 3^{5} \bmod 23$
$=1 \cdot 3^{5} \bmod 23$
$=27 \cdot 9 \bmod 23$
$=4 \cdot 9 \bmod 23$
$=36 \bmod 23=13$

Bob:

$$
\begin{aligned}
& \quad y \leftarrow\{0, \ldots, 10\} \\
& \text { Say } y=5
\end{aligned}
$$

$$
2^{5} \bmod 23=9
$$

Output: $3^{5} \bmod 23$

$$
\begin{gathered}
=27 \cdot 9 \bmod 23 \\
=4 \cdot 9 \bmod 23 \\
=36 \bmod 23=13
\end{gathered}
$$

