Adversarial Machine Learning —An Introduction

With slides from: Binghui Wang

- Machine Learning (ML)
- Adversarial ML
- Attack
 - Taxonomy
 - Capability
- Adversarial Training
- Conclusion

- Machine Learning (ML)
- Adversarial ML
- Attack
 - Taxonomy
 - Capability
- Adversarial Training
- Conclusion

Machine Learning (ML)

- Define ML Tasks
 - Supervised, semi-supervised, unsupervised, reinforcement learning
- Data Collection and Preprocessing
 - Sensors, camera, I/O, etc;
- Apply ML Algorithm
 - Training phase: Learn ML Model (Parameter and Hyperparameter Learning)
 - Testing (Inference) phase: Inference on unseen data.
- Theoretical Support: PAC Model of Learning

ML Is Ubiquitous

- Cancer diagnosis
- Self-driving cars
- Unmanned aerial vehicle
- Surveillance and access-control
- ...

- Machine Learning (ML)
- Adversarial ML
- Attack
 - Taxonomy
 - Capability
- Adversarial Training
- Conclusion

What Do You See

What Do You See Now

What Do You See Now

Adversarial ML

- A research field that lies at the intersection of ML and computer security (e.g., biometric authentication, network intrusion detection, and spam filtering).
- ML algorithms in real-world applications mainly focus on effective or/and efficient, while few techniques and design decisions keep the ML models secure and robust!
- Adversarial ML: ML in adversarial settings.
- Attack is a major component.

- Machine Learning (ML)
- Adversarial ML
- Attack
 - Taxonomy
 - Capability
- Adversarial Training
- Conclusion

Attack

- Attack Taxonomy
 - Poisoning (Causative) Attack: Attack on training phase. Attackers attempt to learn, influence, or corrupt the ML model itself.

Attack

- Attack Taxonomy
 - Evasion (Exploratory) Attack: Attack on testing phase. Do not tamper with ML model, but instead cause it to produce adversary selected outputs.

Attack

- Attack Taxonomy
 - Model Inversion Attack: Extract private and sensitive inputs by leveraging the outputs and ML model.
 - Model Extraction Attack: Extract model parameters via querying the model.

•

Figure 1: An image recovered using a new model inversion attack (left) and a training set image of the victim (right). The attacker is given only the person's name and access to a facial recognition system that returns a class confidence score.

Model	OHE	Binning	Queries	Time (s)	Price (\$)
Circles	-	Yes	278	28	0.03
Digits	-	No	650	70	0.07
Iris	_	Yes	644	68	0.07
Adult	Yes	Yes	1,485	149	0.15

Table 7: Results of model extraction attacks on Amazon. OHE stands for one-hot-encoding. The reported query count is the number used to find quantile bins (at a granularity of 10^{-3}), plus those queries used for equation-solving. Amazon charges \$0.0001 per prediction [1].

Evasion Attack (Most Common)

- The most common attack. It can be further classified into
- White-Box: Attackers know full knowledge about the ML algorithm, ML model, (i.e., parameters and hyperparameters), architecture, etc.
- Black-Box: Attackers almost know nothing about the ML system (perhaps know number of features, ML algorithm).

- Given a function (LogReg, SVM, DNN, etc) $\mathbf{F}: \mathbf{X} \mapsto \mathbf{Y}$, where X is a input feature vector, and Y is an output vector.
- An attacker expects to construct an adversarial sample X* from X by adding a perturbation vector $\delta_{\mathbf{x}}$ such that

$$rg\min_{\delta_{\mathbf{X}}}\|\delta_{\mathbf{X}}\|$$
 s.t. $\mathbf{F}ig(\mathbf{X}+\delta_{\mathbf{X}}ig)=\mathbf{Y}^*$

- where $\mathbf{x}^* = \mathbf{x} + \delta_{\mathbf{x}}$ and Y* is the desired adversarial output.
- Solving this problem is non-trivial, when F is nonlinear or/and nonconvex.

- Approximate Solution: Jacobian-based Data Augmentation
 - Direction Sensitivity Estimation: Evaluate the sensitivity of model F at the input point corresponding to sample X

$$\nabla \mathbf{F}(\mathbf{X}) = \frac{\partial \mathbf{F}(\mathbf{X})}{\partial \mathbf{X}} = \left[\frac{\partial \mathbf{F}_j(\mathbf{X})}{\partial x_i} \right]_{i \in 1..M, j \in 1..N}$$

- Perturbation Selection: Select perturbation affecting sample X's classification
- Other Solutions
 - Fast sign gradient method
 - DeepFool
 - ...

Fig. 3: Adversarial crafting framework: Existing algorithms for adversarial sample crafting [7], [9] are a succession of two steps: (1) direction sensitivity estimation and (2) perturbation selection. Step (1) evaluates the sensitivity of model F at the input point corresponding to sample X. Step (2) uses this knowledge to select a perturbation affecting sample X's classification. If the resulting sample $X + \delta X$ is misclassified by model F in the adversarial target class (here 4) instead of the original class (here 1), an adversarial sample X* has been found. If not, the steps can be repeated on updated input $X \leftarrow X + \delta X$.

Output classification

Black-Box Evasion Attack

- Adversarial Sample Transferability
 - Cross model transferability: The same adversarial sample is often misclassified by a variety of classifiers with different architectures
 - cross training-set transferability: The same adversarial sample is often misclassified trained on different subsets of the training data.
- Therefore, an attacker can
 - First train his own (white-box) substitute model
 - Then generate adversarial samples
 - Finally, apply the adversarial samples to the target ML model

Black-Box Evasion Attack

Figure 3: **Training of the Substitute DNN Architecture** F: the attacker (1) collects an initial substitute training set S_0 and (2) selects a substitute architecture F. Using the oracle \tilde{O} , the attacker (3) labels S_0 and (4) trains substitute DNN F. After (5) Jacobian-based dataset augmentation, steps (3) through (5) are repeated for several substitute epochs ρ .

- Machine Learning (ML)
- Adversarial ML
- Attack
 - Taxonomy
 - Capability
- Adversarial Training
- Conclusion

Adversarial Training

- Adversarial samples can cause any ML algorithm fail to work.
- However, they can be leveraged to build a more accurate model.
- Called adversarial training: learning with a adversary.
- A two-player game.

Adversarial Training

Min-max objective function

$$\min_{oldsymbol{ heta}} \max_{oldsymbol{\epsilon}:\|oldsymbol{\epsilon}\|_{oldsymbol{
ho}} \leq \sigma} \mathcal{L}(oldsymbol{x} + oldsymbol{\epsilon}; oldsymbol{ heta})$$

Unified gradient regularization framework

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{x}) + \sigma \|\nabla_{\boldsymbol{x}} \mathcal{L}\|_{p^*}$$

- Machine Learning (ML)
- Adversarial ML
- Attack
 - Taxonomy
 - Capability
- Adversarial Training
- Conclusion

Conclusion

- ML algorithms and methods are vulnerable to many types of attack.
- Adversarial examples shows its transferability in ML models, i.e., either cross-models (inter or intra) or cross-training sets.
- However, adversarial examples can be leveraged to improve the performance or the robustness of ML models.